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COMPLETENESS THEOREMS FOR
CONTINUOUS FUNCTIONS AND
PRODUCT TOPOLOGIES

BY
JOSEPH SGRO

ABSTRACT

In this paper we formulate a first order theory of continuous functions on
product topologies via generalized quantifiers. We present an axiom system for
continuous functions on product topologies and prove a completeness theorem
for them with respect to topological models. We also show that if a theory has a
topological model which satisfies the Hausdorff separation axiom, then it has a
0-dimensional, normal topological model. We conclude by obtaining an ax-
iomatization for topological algebraic structures, e.g. topological groups, prov-
ing a completeness theorem for the analogue with countable conjunctions and
disjunctions, and presenting counterexamples to interpolation and definability.

§0. Introduction

In [12] we developed a first order theory of topology using the notion of
generalized quantifiers. In that paper we interpreted Qx¢(x) to mean that the
set defined by ¢(x) is “open”. The main result was a proof of a completeness
theorem for topology from the following natural set of axioms:

Ox (x = x),

Qx (x # x),

Qxe A Qxy — Qx(p A Y),

VyQOxe(x,y)— Qx3ye(x, y).

This paper continues the study of first order topology by presenting a first
order theory of continuous functions on product spaces. Our approach to
product topologies is via generalized quantifiers. We add to the first order
language, L, new quantifier symbols Q"x,, - - -, x,, for each n € w. The intended
interpretation of Q"xy, - - -, x.¢ (X1, - - -, X, ) is that the set defined by ¢ (x4, *, x..)
is ““open” in the nth product topology.

This formalization enables us to show in §2 the completeness of the theory of
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product spaces with continuous functions using the following natural formaliza-
tion of the topological notions:

Q7xy, 7, X (x1= x1),

Qi+ x (X1 #£ %)),

Qm"X1, Xap AQ Xy, -, Xl = Q"xy, v -+, X (@ A YY),

VyQ xs, o o (X1, 1 Xy )= Q Xy -+ -, X By@ (X1, 077, Xy ¥),

Q™1 X0 A Q™ Xms1s "y Xmanl = Q7" X 1, 5, X (@ A ),
Q™xy, -, x,.(p(x,, e X.,)—> ka.'l, . .9xik<P(xo'(1)y . .’xa("))’

where 0 :m —>m, ,|o[m]|=k and range o ={i,<--- < i};
Q™1 X @ (X1, %)= VX -, X Q" Xy 7 X @ (X1, -+ ) X ),

Onyb s ‘s y'nd,()’h Tt ym)_> O"H»"szl’ T Zma yk+ly Y yrm
(ayl’ trty Yk ({p(}’l, M) }’m)/\ ¢(Zl’ T Zm YLt yk)))’

where @{xi," ", X5, Y1, *, ¥m ) defines an (n, k)-ary relation.

We show this by adding enough open sets to the topology to insure that every
“open” set in the Q"x,,* - -, X, interpretation is the union of open n-boxes.

In §3 we present several applications of the basic completeness theorem. The
first is that any L(Q"e.) theory which satisfies Q*xy (x # y), i.e. the Hausdorff
separation axiom, has an interpretation where the topology is 0-dimensional and
normal. One should notice the similarity of this result to a result in [12] where we
showed that an L(Q) theory which is consistent with VyQx (x7# y) has a
0-dimensional normal topological model.

Other results include an L(Q) axiomatization of the L(Q) theories of
topological groups and vector spaces, a completeness theorem for L., (Qx<.)
and counterexamples to the interpolation and definability problems for
L(O%e.).

§1. Preliminaries

Take the first order predicate calculus L with the identity symbol =. We form
the language L(Qnc.) by adding to L new quantifier symbols Q" for n € w.
Thus L(Q}e.) has the quantifiers (Ix), (Vx), and (Q"x,, -+, x,) for n € w. The
set of formulas of L({Qre,) is the smallest set which contains all the atomic

formulas and is closed under A, v, ~, (Ix), (Vx) and (Q"xy, - - -, x.) for n € w.
We will use the convention that ¢(vy,---, v.) denotes a formula of L(Qec.)
whose free variables are among v,, - - -, v.. Sentences are formulas without free
variables.

Take U to be a model of L and q.C S(A") and form (U, q:,42,q3, ).
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(N,q1,92,q3, - :) is called a weak model for L(Q"e.). The notion of an k-tuple
a,, -+, a. € A satisfying a formula ¢ (v, -, v) of L(Qrc.)in (U, 91,492,053, )
is defined in the usual manner by induction on the complexity of ¢ and is
denoted by

A, 41,615,05 ) @[an -, al.
The Q"x,, "+, x, clause is defined as follows:
U, 01,8203 )VE (Q 0y s Vs YO [B1: s Uiy s Donomy * * *» Gk}
if and only if

{(bm’ R bm+n>‘(%[’q1’ Q2, q3a T ')
Fe [al’ Oty Doy D s ak]}e A

where ¢ (v, -, e+n)is a formula of L (Qne.). The other clauses in the definition
are the familiar ones for L. It is easy to check by induction on the complexity of ¢
that if all the free variables of ¢(vi,---,v,) are among v;,---, v, and if
a,=by, -, a, = b, then

(%,QUQLCU,“')": (p[ah“'yan]

if and only if

(g‘)’[’quqLQS’” )}= (P[bl,’ ",bn].

The axioms for L(Qne.) are:

1) Vx, - x. Vx{(p o )= (Q"y, -, %0 © Q xy, o+ -, Xuth ),

) O™y, Xe@ (X, 5 X)) Q7Y Ya@ (Y, V)
The rules of inference for L(Q}c.) are the same as for L, namely:

Modus Ponens: From ¢, ¢ — ¢ infer .

Generalization: From ¢ infer (Vx)¢.

For convenience we denote the sublogic L(Q") of L(Qe.) by L(Q). A more
explicit presentation of the L(Q) version of the following theorems is found in
Keisler [7]. We will not present the proofs for L (Qre.) since they are analogous.

THeEOREM 1.1. (Weak Completeness Theorem). 3 is consistent in L(Qhe,) if
and only if 3 has a weak model (U,q.,92,95, - ), where the elements of each q.
are all L(Qc.) definable.

Let L. be the infinitary logic with countable conjunctions and finitary
quantification. Then L., .(Qne.) is the logic formed by adding to L,,. the
quantifier symbols Q"xy,-- -, x, for n € w.
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More formally, the axioms and rules of inference for L, .(Qre.) are just those
for L(Q) and L., For the L(Q) version of the following theorems see [7].

THEOREM 1.2 (Completeness Theorem for L..(Qne.)). A sentence ¢ of
L...(Qne.) is consistent if and only if ¢ has a weak model

We now proceed to present several definitions and theorems which will be
needed in this paper.

DerinitioN 1.3 (Tarski and Vaught). (B, ri, rz, 13, - - ) is said to be an elemen-
tary extension of (%,91,92,45,--+), in symbols (U,q1,92,95 " )<
(B, r, rr,-0 ), if and only if A CB and for all formulas ¢(x,,---, x.) of
L(Qre.) and all ay,-- -, a. € A we have

(%qu’qbq;‘a“.)’= ‘P[al".',an]
iff (B,r,r,r, ) @la, -, a.].

A sequence (%.,q%,95,0%, '), a <y, of weak models is said to be an
elementary chain if and only if we have (., 95,05, 95, ) < Up,q%, 65,05, )
for all a < B <.

The union of an elementary chain (., q%,493%,93,---), a <7, is the weak
model

(%[1q11q2’q31"')= U (mmq‘;!q;’qg"”)

a<y
such that A = U ,<,U, and q, ={SCA"| for some B <y, B=a <y implies
SNALEqS}.

These definitions enable us to state:

TuEOREM 1.4, Let (M., q%,45,03,-° ), a <7, be an elementary chain and let
N, q1,92,95, ) be the union. Then for all a < v,

(Q,Im q?, q;’ qg, "t ') < (QI,QM q21 Cla, tee )
We now present the last model theoretic theorem needed for weak models.

THEOREM 1.5 (Loéwenheim Skolem Theorem).

a) Let (N,q1,02,93, ) be a weak model of L(Qre.) and R a cardinal such
that |L| =R=|A|. Then there is a weak model (B,r,r;,rs,-+) such that
(B, r,rrs, )< ,01,92,93,-+) and |B|=N.

b) Let (%,91,92,q3,- - -) be a weak model of L(Qre.) and 8 a cardinal such
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that |L|+|A|=N. Then there is a weak model (B,r,ryrs,- ) such that
%,91,092,03, ) < (B, r,r,r,-+) and |B|=N.

For notational convenience, if X = (x,, - - -, x,.) is a set of distinct variables and
7 =(zy,-+-,z,) is a set of elements of some model, then f € (¥/Z) iff for each
1=i=n, t is either x; or z. Thus ¢(r) has the obvious interpretation. Also we
will regard an (m,n)-ary relation (or function) as a formula
@(X1," "+, Xm, Y1, *, yn) Which defines it as a relation.

In order to study our first order topology we will now give the necessary basic
definitions and theorems.

Topological notions are standard as in [2]. Recall that a topology generated by
a set, o, of subsets of a space is the collection of arbitrary unions of finite
intersections of o. A collection of generators Yor the product topology of
O=M,enmX, is{{fEP|f(R)EU} U openin X,, neE M} f X=X, yEM
then 11X, is called the topological power of X.

Let f: X — Y be continuous. Then

P -B=X-£®) (U E)= U 1 E;

()= Qe

Concluding the basic definitions and theorems we present the following basic
model theoretic definitions.

DEerINITION 1.7. A weak L(Qne.) model (%, 91,492,495, * +) is called topological
iff each q;, i € w, is a topology on A'. (Notice that an L(Q) model, (¥, q), is
called topological iff q is a topology on A.)

Definition 1.8 now enables us to state the final definition of this section.

DerFiNITION 1.8. A topological model (%, q1,92, a3, -) is called complete iff
q. is the kth topological product of q; on A. For notational convenience, if
(U, q1,92,q3, - - - ) is a complete topological model we abbreviate it by just writing
(¥, q), and the remaining structure is understood.

§2. The basic completeness theorem

We will show in this section that the theory of continuous functions (relations)
on product spaces has the following axiomatization.
(B0) All axiom schemes for L(Q:e,).
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(B1l) Q"xy,- -+, Xa (1= x1).

(B2) Q"xy, "y x, (x1 # Xl)-

(B3) Q™% X @ AQ™X1, -, X > Q" x1, -, Xu (@ A YY)

(B4) VyQ x1, " , Xu@ (X1, s X ¥) 2> Q" "xp, « + o, X Y@ (X1, 7 Xy V).
(BS) Q™x1, " Xn @ AQ ™ Xnsty* , Xem U= Q"X 4, X (@ AY).

(B6) Q%1 Xa @ (X1, "+ *5 Xu) = Q Xty *, X @ (Ko * * *5 X o)y

where o : m — m, |o[m]|=k and the range of o = {i, <, -, <i}.
(B7) Q™1+, X (X1, ", X0 )= VX1, -, Xi Q"  Xiat, X (X1, + 7, X,).
(B8), Qmy1, s ymtb(y1,- s yrn)_) Q™ 2y, Y Zn Y1y " s Ym

(3}'1, Y Yk ((v[/(yla Tt )’m)/\ ¢ (Zl, t 2y )’1, Y yk))),

where ¢ (z1,° -+, 2., Y1, -+, i) defines an (n, k)-ary relation.

Axioms B0-B4 formalize our notion of a topology and are the L(Q:re.)
analogues of the axioms used by the author in [12] to show a completeness
theorem for topological models. The meaning of B5 is that the product of open
sets is open. B6 and B7 state that the permutation, projection, or consolidation
of an open set is open. Finally, B8, says that ¢ defines a continuous relation, i.e.,
the inverse image of a slice of an open set is open.

One can see, without much difficulty, by using the definition of a product
topology and continuous functions that B0O-B8, are true in every complete-
topological model where ¢ is continuous. The converse of this is our complete-
ness theorem and is stated as follows:

If 3 is an L(Q'e.) theory and ¢., a € I, are (n., m,)-ary relations for a € I,
then 3 has a complete topological model, where each relation ¢., a €1, is
continuous if and only if 3 is consistent with BO,--+,B7 and B8, fora € L

Before we proceed to prove this we need several basic facts from topology and
a theorem of the author [12].

Let (X, 7) be a topological space. Then if Y C X and Y is not open, there is a
¢, € Y such that if O € r and 0 C Y then ¢, & 0. In other words, any non-open
set has at least one point which is not in any open subset of it.

Using this fact we proved in [12] the L(Q) analogue of the following
completeness theorem.

THEOREM 2.1. Let 3 be an L(Qc.) theory. Then % is consistent with B0-B4 if
and only if 3, has a topological model (%, q1,92,93,° -+ ) where each q., n € w, is
generated by the definable Q" open sets (with parameter from A) and || =|L|.

Suppose we have a topological model (¥, q1,q2,43,- - +) where each 9., n € o,
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is generated by the Q" definable open sets and (¥, g4, 92,93, - - - ) models BO-B7.
Also assume ¢,, a € I, are definable relations of (%, q4, 92,93, -) which are
“continuous”, i.e. B8,,, @ € I, holds. Then assume we are given {¥s}gep, a
collection of subsets of A.

If we add the {¥g}aep to q. and still expect to have a model satisfying (in the
expanded language with a U, for each %) B0-B7 and BS,,, a € I, what do we
need to add to g, n € w? The following is the answer.

Let ¢., a € I, be a collection of (n., m. )-ary relations which satisfy B8, , a € L
Let @' = {(b, @)| (4, b) € ¢.} be the inverse relation of ¢,, a € I. We then define
a collection of (definable) relations as follows.

WTo = {¢2'}aer U {identity relation on each A", n € w}

WTi= WT, U{e(Xoqy """ Xotme» Y15 * *» Ym,) O maps n, into n,
where ¢ € WT,}

U{@ (X1, * 5 Xngy Yottty * * *s Yorimg)) O Maps m, into m,
where ¢ € WT,}

U {¢(x1’ Uy Xngy Y1, 700 )’m.)/\ ¢(zlv *t % Zny by oy tm‘,)
where ¢, ¢y € WT,}

U{¢(xly G X, Y, Ym,)
where ¢ € WT, and ¢ an individual constant symbol}

U {(p(xl’ (RN xn’, yl, vy C, (RN ym.)
where ¢ € WT, and ¢ an individual constant symbol}

U{(ayh t Yk (‘P(xl, n ';xn,) Vi, 0 ym,)

A(p(yh”" Yres 21,07 % zm.,))), kém,,k ém‘,,
i.e. the composition of the two relations, where ¢, ¢y € WT,}.

Let WT = U,c, WT.

The' intuitive meaning of WT is that it is the smallest collection of definable
relations containing WT, and closed under composition, projection, products
and mappings of the variables. Hence, since each ¢, satisfies B8,_, « € I and
*,91,92,93,--+) models BO-BS,, a € I, we have that each ¢ € WT takes
definable open sets to definable open sets.

Now define q%, n € o, as follows:

q» = the topology generated by {¢ (I~ B;)| where each B, € q., or B; = U,
for 1=j=k, ¢ € WT and ¢ maps into A"}
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Lemma 2.2. Let (U,q%,9%,0%,---) be as above. Then (N,q%,9%,9%,-:+)
models B0-B7 and B8, , a € I, in the expanded language containing a U, for
each U,

Proor. Since each g%, n € w, is a topology we have that (U, q71,9%,93,-+*)
models B0-B4. To show BS5 let us take 0¥ € g% and 0%€ g% Now 0% =
U.ee0%and 0% = Uzep 0% and 0% X 0% = U, preexp 0% X 0% where each 0%,

% is in the generating set. Since 0% 0% are in the generating set, 0% =
M 0. ([IB;)) and 0% = (2, s (I1 B}). Thus

02X 0% = Nes ((ITB:)x (1 BY))

where ¢; € WT. This uses the fact that the product of intersections is the
intersection of a product. Hence, 0% X OF € q..

If 0*=U,,0%€q% and o:m—->m|o(m) =k and rang o=
{iy<--- <.}, then

0* = {<t0(1)’ Tt ta("))|<tls Tt tn) € 0*}

= U (0% €ak
acl

since ¢ applied to the identity map on n is in WT and (N 0*)” = N(O*").
Hence we have B6. B7 follows similarly, since the projection of the identity is
also in WT and a projection of an intersection is the intersection of a projection.

Given the relation ¢, we need to show B8, holds in (,q%,43,q9%, ).
Suppose 0* = U,ep 04 € g%, 0% a basic open set of g%, i.e., 0% = N g, (T B)).
Then

0*% = {@a({ts, " *, t)) besr, "+ *, ta)|  Where (t, "+, 1.) € O}

= U (O3 E€Earimu

BED

by construction of WT and the fact that
0% = (N ea(I1 B)))*™ = N (gs(I1 B;)™) = N @5 (I1 B;).

Thus we have shown the lemma.

Now we will proceed to prove the main completeness theorem by presenting
the following lemma which tells us that for each é € @ (an open set in the Q"
interpretation) we can add a II'-; ¥; (an open n-box) to the Q" interpretation
such that ¢ €., ¥ C 0 and still keep BO-BS,, a €L
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Lemma 2.3. Let % be an L(Qc,) theory consistent with B0-B7 and BS,_,
a€L If é={(c, ",¢) is an n-tuple so that ¢(c, " ",¢c,) and
Q™%+, X (X1, * +, X, ) are consistent with 3 then Vi(c:), QxVi(x), 1=i=n
and Vxi, -, % (A2 V(%)= @ (x4, - -, x.)) is consistent with % and B0-BS,,,
a € I Here the Vi(x), 1 =i = n, are new one place predicate symbols.

Proor. We need only prove this for countable 3, since then, by using Theorem
1.1, we have it for all 5 and BO,---,B8,, a €I Let (%,91,092,95,---) be a
topological model of 3 generated by the definable open sets. This is possible
since X is consistent with B0-B4 and Theorem 2.1.

We want to define Y. CA, 1=i=n such that ¢*€ll",¥%;C
[e(xy, -+, x,)]®r*2%»") and forming (A, q%,a%,9% ) from the {¥:}izisn We
have that

,a%,0%,9%,-+) = (%I’Qbfh,ch,"')-

L(QRewXA)
To do this we will construct the ¥;’s by induction.

Suppose we have picked zi,- -+, z% for each ¥; so that

H {Zh R Zlf} - [(p(xl, Ce X )](ﬂ.ql.qral.-u)
i=1

and(c¥, -+, cu)=(zl,- -+, z%. Now to pick the z{*', 1 = i = n we want to insure
that

n
[T{zh 2% 2 C Lo (x, - - v, x, )] Toraa®ar)
i=1

and also to somehow insure that if o (x,, - - -, x,» ) is a formula of L (Qc..) so that
(%7q!’q23q39...)}: NOmxh".yme(xla.'.sxm)

then we do not get (A, q%,q9%,q9%, - )F O™y, -, xna(xy, - -, X ). That is

[cr(xl,---,x,,,)]‘“"‘;"‘;“;‘“)?-‘ J 03

BED

where 0% € g, and is a basic open set.

We will then assume that we have some countable enumeration of basic open
sets, i.e. Op = N g (11 B;), and o (x4, - -, x,,) as above. We claim that the z+*'
can be picked such that

(*) H {Z xiy Tty Z?, Z:‘H} C [(p(xl’ el x”)](”“‘l"‘z-“s““)
i=1
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and

**) if 05C[o(xy,: -+, x,)] ooz

then there is an O such that
0%C 0 Clo(xy, -, x")](“'“pﬂz-«,.---)
and O € qn.

This is done as follows. To have (*) we must have

(17 aihec= NN
fexiayfzl 2y Te@EE
172

{(P ( t‘)}(?l.q pA2a30)
)

where {@()}™ 2% ={(ay, ", a.)|(¥, 91,02, 95, ) @(ki, -, k.) where
ki =a; if t = x;, k: = z; otherwise}.
This follows, since if

zZ = <Zl, cee, Zn) (= H {Zl,-, cee Z:"H}g [¢(x1’ N xn)](u’qr"z'qs"")
i=1

then 7 € {@(£)}™**+*>, Conversely, suppose that we have 7 € C, then given
any 7,€1I.,{z},- -+, 2%} and any  €(Z/%,) we have

FE[@(xn -, x| @ertats),

To obtain (**) we can assume without loss of generality that 0% =
N g (Ilj=;B;) and B;=%; for 1=j=n and B, = 0; €q,, for i>n. Thus
consider N ¢, (C XIIiL,, O,). If

N s ( Cx H 08,.) R CICTRER A | AT P ]

then let (z{*',---, z¥""Y€ C so that

< N @5, ((z',‘n, s 2 x I 0’,,.) ) [0 Gy -+, X ) 3£ .
j=m

k+1

Otherwise let z§™' = 2%, 1 =i = n and we get that N ¢, (C X I, 05)Eq. and
is a subset of [o (X1, "+, X )]®*2>"? which suffices since II,{z}, -, z%¥}C C.

Now we will show that if ¥ = {z% | k € w} then we have the conclusion to the
lemma.
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‘e H Y, Clo (X1, -+ ) X )| 092937
i=1

by (*). To show

(%I’q;;,q’;’q;) = (%I,Qz,%,cb,"’)

L(QreuXA)

we use induction on the Q™ quantifiers. The only difficult case is the Q™ clause.
Since q; C q* for all i we have that if

(Q[;Ch,CIz,Ch,“ .)F= mel’__ ',me(X1," 'yxm)

then

(%7q=;,qg,q§,.")’= meh"'axmx(xh""xm)-

So suppose that

(%[aQbCIz,Qm"')': ~ Q"X XX (X1, 0 'axm)

and

(%aqt,q;,qg,“')': Omxla""xmx(xla”"xM)'

Hence

[X(xla T Xm )](Ql.al,az,qy"') = [X(xl, Tt Xm )](‘l!,q;.q;.a;,-")

= U 0%
BED
% BE€D, a basic open set of gk Thus by (**) each O%3C Oz C
[X(xl, s Xm )](Ql,ql,q2,q3,~--) and 0‘3 (S Q. So UBED Op = UﬂED 03 =
[x(x1, - *) xm)]®*72%+ 7 which is a contradiction. Hence the lemma is shown.
Now we are able to prove the basic completeness theorem.
p p

THEOREM 2.4. Let 3 be an L(Qic.) theory. Then 3 is consistent with
BO,---,B7 and B8,,, a €1, if and only if 3 has a complete topological model
(B, r, 12,15, ) such that each ¢., a € I, is continuous.

Proor. (if direction) Straightforward since B0, - - -,B7 and B8, _, @ € I are true
in every complete topological model where the ¢., a € I, are continuous.

(only if direction) Assume 3 is consistent with BO,---,B7 and B8, e« € L
Then by Theorem 2.1 we have a topological model (¥, 91,492,493, --) of % and
BO,---,B7 and B8,, a €I such that |%|=|L|. By repeated applications of
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Lemma 2.3 to the complete theory of (%, a1,02,93,- - - ) we obtain a topological
model (B, ri, 1, 13, - - - ) of 2, BO, - - -, B7 and B8,., a € I, such that |B|=|¥| and
if

BE[e(x, - x)|®mm €,
then there is a ¥4, -+, ¥, € r, such that

EE I_[ Y. C [gp (xl’ ey xn)](m"l"r':r"‘)'
i=1

Hence (B, r, ry, 3, - - - ) is complete. Notice that by Theorem 1.5 we can take
|| =N for any N=|L| and thus |B|=|%|=N.
If we omit B8,,, « € I then we obtain the following interesting corollary.

COROLLARY 2.5. Let 3 be an L(Qne.) theory. Then 3 is consistent with
BO,: -, B7 if and only if 3 has a complete topological model.

Proor. This is a direct application of Theorem 2.4.

CoroLLARY 2.6. (Compactness Theorem). Let 3 be an L(Qe.) theory. Then
Y, has a complete topological model where each ¢., a € I, is continuous if and only
if every finite subset of 3 has a complete topological model where ¢., a € I, is
CORHNUOUS.

ProOF. An easy application of the basic completeness theorem.

CoroLLARY 2.7. The set of L (Qc.) sentences valid in every complete topologi-
cal model (with @., a € I, continuous) is recursively enumerable in the language.

Proor. Theorem 2.4 shows that a sentence is provable from B0, - - -, B7, and
B8,., a € I, if and only if it is valid, so we are done.

We can now prove a Léwenheim Skolem Theorem for complete topological
models with continuous functions using the methods of Theorem 2.4 and [12].

THEOREM 2.8.

a) Let (N,q) be a complete topological model where each ¢., a €1, is
continuous. Then for any R=|L|+|A| there is a complete topological model
(B, r) such that (,q) < (B, r), |B| =N, and each ¢, is continuous in (B, r).

b) Let (U,q) be a complete topological model where each ¢., a €1, is
continuous. Then for any |L|=R=|A| there is a complete topological model
(B,r) < (U, q) such that |B| =N, and each ¢., a € I, is continuous in (B,r).

PrROOF.
a) By the methods of Theorem 2.4 (Completeness Theorem) and the remark at
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the end of its proof we can find a complete topological model (%, q) < (B, r)
such that |B|= N and each ¢., a € I, is continuous in (B, r).
b) Let f%, ¢ a formula of L (Qc.), be as in the author’s paper [12]. That is, for

each formula, @(xi,- ", X%, ¥1,* -+, ym), of L(Qre.) we add a new function
symbol f¢(y., -+, ym) for 1 =i =n and given any formula

‘«/f(xla Tty Xny 21y "t "y zk)
let ¥* be

VYt Yo Zy s Ze (Q X1y, X)W (X1~ ) Xy Z1,* 7 %5 Zk) A
~ Q"X X @ (X1, s Xy Vi, ) Y ) A

Vi, X (X% X 2102 Zk)=> @ (X1y " s Xy V1" % Vi)
= e T n ) s iy s e YY) A
~T Ly s Ya)s 2 )

That is, if ¢ defines a non-open set in A" then (f{, -, f%) is a point of ¢
which is not in any open subset of it. (This was used in the proof of Theorem 2.1,
confer [12].) Since U is a complete topological model where each ¢,, @ € I, is
continuous we can expand L to an L’ and U to an A’ so that for every
@ (X1, "y Xny Y1, 7+ Ym ) € L'(Q'ne.,) we have that there are V¢ (z, x, y1," "+, Yn),
1=i=n, such that

(Pv = Vxla S xmvyl; T, Ym (O"xh T xn(p(xl’ Tt xm )/1, Y Ym)
S (AL VIO Xy ya ) AV Z, o 2 (AL V(2o X0 Y1, 5 Ya)

=@z Zm Y, S Y A(ATSLQZVE(Zy X, Y1, 5 V)

holds.

This says that each point in a ¢ definable open subset has a definable n-box
around it contained in the open set defined by ¢. Thus let U* = (A, flerqome.)-
Then (UA*,q) has an elementary submodel (8, r), | B|= N, by the Lowenheim
Skolem Theorem for weak models. Hence if r* is the topology generated by the
L'(Oc.) definable elements (with parameters) of r we are done.

Note that if we let

«k((%,q))=inf{|{B]: B is a basis for q}

then we have shown that we can obtain a model, (B, r*), where « (B, r*)) =|B]|.
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§3. Applications

In this section we will present several applications of the completeness
theorems and the techniques used in their proof.

§3.1 contains the proof that the L(Q}c.) theory of 0-dimensional normal
(paracompact) complete topological models is equivalent to the L(Qc.) theory
generated by Q°xy (x# y) which is a logical formulation of the Hausdorff
separation axiom. As in [12], if we apply this to countable theories we obtain a
metrizable model.

In §3.2 we show that we can extend L (Q) theories with “coordinatewise —
continuous” functions to L{Qrc.) theories where the functions are continuous.
As a corollary to this theorem we present an L (Q) axiomatization of the theory
of topological groups and vector spaces.

Concluding this section we prove a completeness theorem for L. ,.(Qnec.)
which is formed by combining L(Q7c.) with L....

§3.1 We will now present several definitions and theorems from topology
which will permit us to present the main theorem of this section.

DEerNiTION 3.1.1. A topological space is called Hausdorff if every pair of
distinct points can be separated by disjoint open sets.

DermnitioN 3.1.2. A topological space is called regular if each point and
disjoint closed set can be separated by disjoint open sets. (We assume that points
are closed.)

DerniTiON 3.1.3. A topological space is called normal if every pair of disjoint
closed sets can be separated by disjoint open sets. (Again assume points are
closed.)

DermiTioN 3.1.4. A topological space is called 0-dimensional if its topology is
generated by sets which are both open and closed (clopen).

Let (X, 7) be a topological space. If we define the diagonal of X, in symbols
A(X), to be {(x1, x2)| x1 = x,} then we can show the following topological result.

A topological space (X, r) is Hausdorff if and only if the diagonal of X is
closed (in X?).

This now enables us to state and prove that the L(Q:e,) theory of 0-
dimensional normal complete topological models is the same as the L(Qne.)
theory of Hausdorff models. One should note that the Hausdorff separation
axiom is equivalent by the above remark to Q°xy (x# y).
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We first prove the following important lemma which is analogous to Lemma
2.3.

LEmMA 3.1.5. Let 3 be an L(Qe.) theory consistent with B0O-B7 and BS,,
a € L Then if 3, is consistent with Q*xy (x#y), Qx ~ ¥(x), Qx ~ ¢(x), and
~3x(Y(x)re(x)) (ie. ¢ and ¢ define disjoint closed sets) then
V(@ (x)— U™ (x)), Vx(o(x)— ~ U**(x)), QxU**(x), and Qx ~ U%*(x) are
consistent with %, B0, - -+, B7 and B8, , a € I. Here U%*(x) is a new one place
predicate symbol. The conclusion means that U*® and ~ U"Y* define open sets
which separate the sets defined by  and ¢.

PrOOF. Again we only need to show the lemma for countable %; then using
the compactness theorem, we obtain it for all X. Thus let (U, q1,02,q5,--+) be a
countable topological model of 2, B0, ---,B7 and BS,,, &« € I, where the gq; are
generated by the definable open sets.

Again as in Lemma 2.3 we want to form (¥,q%,9%,9%,---)froma %, A - U
and (%, a1,92,q3, -+ ) such that []®*+927»0 C Y and [¢]™*+92*» " C A — U and

(%Iaq‘rng’qun')z (gI,qlan’q%'.')'

L(QRew)A)

Also, as in Lemma 2.3 we will define % and A — % by induction. Thus
suppose we have defined ry, - -, 1. for % and s, -+, s. for A — . Now we will
define an r,, for % and an s, for A — U so that

[o(x1, - -, %) 0250 # ) O3,

BeED
% a basic open set of g}.
We, again as in Lemma 2.3, assume that we have a countable enumeration of
the potential basic open sets, i.e. ¢, (Ili-; B;), and the o(x,, -, x.), defining
non-open sets. It is claimed that .., and s.., can be picked so that

(*) Ti+1y Sk+1 E{rb.'.5 Tiey sl,.", sk}
and et 7£ Skt = A _ [4) v ¢](ﬁ.Q1:Q2-03"").

re+: and se.; also have the property that if 0% (the k + 1st basic open set in the

enumeration) and o (xy, - - -, X, ) (the k + 1st formula defining a non-open set) are
such that
**) 03C[0(x,, -, zp)]Besests

then there is an 0, €q,, where 05C 0, C[0(xs, " *, X, )] T2,
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We do this as follows. In analogue to Lemma 2.3 to obtain (*) we must have
(rk“, sk+1> eC= (D X D)“ A, where

D =(A—([evy]™ =920 fr, - n, 51,7, %)

C is open since [¢ v ]®+*>>") and each s, r, 1 =i = k are closed in q, and A
is closed in q,, because the q, topology is Hausdorff.

We obtain (**) as in Lemma 2.3. It can be assumed without loss of generality
(by the definition of WT) that 0% = N ¢ (II}.; B;)and B,=% and B,= A — U
and B, = 0, €q,, for j 23. Thus if

N ‘PB;(C X I—[ a) - [g'(xl, sy x,,,)]‘“'“v“z'“s"");é@
j=3

then we take (ri.1, S € C so that

s

N (pp‘(<rk+1, sk+1> X H q) — [o-(xl’ RN xm)](ﬂ.arqz,ﬂg,..-) ? @-

i=k+1

Otherwise we let (ri.y, sc+1) be an arbitrary member of C.

To finish the proof of the lemma we let U = {r.}ic., U [¢]®*v*>*>", Then we
claim that % and A — % separate [¢]®™*v»*>” and []®*+*»**"), This is
straightforward, since the sequences {r.}ic, and {s;},c., were picked to miss both
[p]® o> and [@ ]®™*+72%), Also by (*) and the fact that C N A = & we know
that {r}ico N {si}tica=.

Let (%, q%,9%9%,---) be the model formed from % A-% and
(U, 1,092,093, - - +) as in Lemma 2.2. We will show that

(%{’ qu q;’ Q§, tT ) "E (QI, a1, 02,093, *° )
L(Qnew)A)

To show this we use induction on the Q™ quantifiers. Suppose we are given
Q"xy, -, x,x{xy," ", % ). Then since q; Cq* for all i we have that if

(U, 01,0205 - )F Q™xy, X X (X1, -+ *, Xm)
then
U, q%,0%,9%, - )F Q™xpy -, X X (X1, "%, Xm ).
To show the converse suppose that

(QI,qI)qZ’qi!au')}= -~ Omxb'.',xmx(xls”',xm)

and
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(g[’QT,q;!qgv' ) )t= Omxla' ) ',me(xh' ' "xm)'
Thus

[x (X1, 5 Xm )](ﬁ-qpaz-aaw-) =[x (X1, *, Xm )](‘!-«I-a;‘a;w)

= U 0%

gED

& a basic open set. By (**), for each B € D we have
02 g 05 g [X(xl, A " xm )](u‘ql’q?qgv“‘)

and Og € q,.. Hence

U 0= U 05= (-, )"0

geD geD

This is a contradiction so we are done.
We now have enough machinery to prove the main theorem of this section.

THEOREM 3.1.6. Let % be an L(Qc.) theory and k an infinite regular cardinal.
Then % is consistent with BO,---,B7, B8, , a € I, and Q’xy (x# y) if and only if
2 has a 0-dimensional normal complete topological model of cardinality k where
each ¢,, a € I, is continuous (complete in the model theoretic sense).

Proor. (if direction) Easy since normal implies Hausdorff.

(only if direction) This proof is analogous to the proof of Theorem 3.1.2 of
Sgro [12].

Let (%,91,92,q5, - - - ) be a topological model of B0, -+,B7, B8, , a € I, and
Q?xy (x# y), where the g, are generated by the definable open sets. By applying
Lemma 3.1.5, Theorem 1.4 (union of elementary chains), and Theorem 2.4 «
times we obtain a regular 0O-dimensional complete-topological model,
(U, at,a9%,0%,---). (Note that our procedure does not work for pairs of closed
sets.)

Since (U*, g*) is complete-topological and regular we can expand it by adding
new function and predicate symbols from a new language, L*, such that

(%[*s fﬁEL‘(OlTJew)y V‘f (zl'a x.—, )’1, Y )’..,- )¢EL‘(O:EW), Uu. (x1 )’), q *)

models T, VxQyU(x,y), VxQy ~ U(x, y), for each ¢, ¢ € L*(Qrec.)
Vy(Qup(x)Ad(y)=>32(U(z,y) AVx(U(z, x) > ¢(x))),

and ¢* and ¢V (as in Theorem 2.8). The ¢° and ¢ V’s guarantee that the weak
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model is a complete topological model. The other formulas state that U(x, y)
defines a collection of clopen sets which insure that the topology is 0-dimensional
and regular.

We will now define an elementary chain of L*(Q:e.) complete topological
models, (Bg, rz), B < k, as follows:

If @ =0 then (B, ro) = (U*, f*, V¥, U, q*) as above.

If « = B +1 then we define a theory T, to be:

Th((Be, 1e))

~@(Cq ", Cpy by, -+, b)) where

(Bara)kE ~Q"xy, , Xm@ (X1, *, Xy b1y -, Bi)

T, = Y(cy, -+ cy) where

(ff (b= b)), fa (by, -, B E [(x1, - - -, X )]Te " and
(Bara)F Q" x, - X (X1, *, X ).

T. is consistent since if

(fe(by, - b)), falby, - b)Y E [Wilxy, - -, xm)]“"p'n)

for 0=i=n then

(f‘lp(bla Y bk)a . ',f:l(bh "t bk))e osOSH [dji(xly T xm)](mp'a).

Thus
n [l,li(xl’ s Xm )](mp'p)g [‘P(xly M x»;’ bl <t bk )](m"‘).

O0sisn

Take (B, r.) to be a model of T, of cardinality «, where r, is the set of
definable open sets. The purpose of (B.,r.) is to enable us to take infinite
intersections of open sets and to make them open.

If « is a limit ordinal then we take (B, r.) to be the union of the elementary
chain (Bg, 1s), B < a.

Let (B, r) be the union of the elementary chain (B, r.), @ < x. By Theorem
1.4 and an easy observation

B,r.) < @@B,r) for a<k.

L*(Qrew)

Define r* to be the topology generated by {Cws b E B, B <k}, where
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Owpy=Neocewsy0 and e(b,B)={0 C B|b E O and O is a definable clopen set
of r with parameters from (B, 75)}.
We claim that

®B,ry = (B, r*).
L*(QRewXB)

This is most easily shown by induction on the complexity of the formulas with
parameters in B. The difficult case is the Q™ clause. Since r C r* we have that if
(B, r)E Q™% Xm@(X1,* . Xm) then (B, r*)E O™xyy - Xm@ (X1, * " 7, X ).
Suppose that (B,r)E ~ Q™xy,**, Xm@ (X1, * *, X ). Then if

[e(xs, = % )I®7 = [0 (x1, - -+, Xm )],
while
(B, 1) O™x1, ) Xm @ (X1, -+, Xom)
we have

)(587)

St

O(b, By),

1

[QD(X[,"‘ X

tT,‘

which implies

(f‘lp(bn Ty bk)’ o '»fr(bu Y bk ))E 131 O(b;,ﬁi)

for some j € T. However,
X (B.r)
H O(bi»ﬁi): ﬂ [dly(xl’...axm)] ’
i=1 yEG

where | G | < k. This follows from the fact that a cartesian product of intersec-
tions is the intersection of cartesian products and that a finite cartesian product
of definable sets is definable.

Thus for some 6 < «, 6 a sufficiently large limit ordinal, we have from the
definition of T,, a < k, that

(SBG’ rﬂ)}= ~ (P(Cnlp, ne ',C:)A A d’v (c}p’ Tt C',:)-
yEG
Hence (B,r*)E ~Q™xy,-*, Xm@ (x4, * -, X, ) Which is a contradiction.

(%, r*) is 0-dimensional and regular, since (%B,7*) has a clopen basis of
cardinality k which is closed under intersections of cardinality less than . This is
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because « is regular, the definition of T,, a < k, and r*. We will show (B, r*) is
normal by using a generalization of [2, Theorem 18.14, p. 121] as follows:

THEOREM 3.1.7. Let (X, 1) be a regular topological space of cardinality «,
regular. Then if v has a basis of cardinality k closed under intersections of
cardinality less than « then it is normal. In fact it is paracompact (2, p. 338).

Also note that each ¢, is continuous in (B, r*) since @2' ([ pep0s) =
M sepe='(0s).

One should notice that in the above proof we have actually constructed (B, r*)
so that each product topology is normal.
This theorem has the following interesting corollary.

CorOLLARY 3.1.8. Let 3 be a countable L (Q'c.) theory. Then % is consistent
with BO,---,B7, B8,, a €I, and Q*xy (x#y) if and only if 3 has a second
countable 0-dimensional metrizable complete topological model where each ¢, is
continuous.

Proor. Use the fact that a second countable, regular and Hausdorff space is
metrizable.

§3.2. In this section we study the interrelation of L (Q) theories and L (Qne.)
theories. The reason for this is that in L (Qre.) we have a method of expressing
the fact that a function is continuous in a product topology. In mathematics there
are many occasions where this situation arises in a first order theory, e.g.
topological groups, topological vector spaces, etc. It is natural to ask what
conditions on functions (or relations) in an L(Q) theory, 3, are necessary to
insure that they can be interpreted as continuous functions in some L(Q7c.)
theory extending Z.

The following definition and theorem formalize this.

DEerINITION 3.2.1. A collection of (n,m)-ary relations @, (xy," ", X,
Vis s Ym)» @ € L is called L(Q)-continuous (in %) if and only if

/:-\l Qyli(y)—>Vxy, - ',xka<Ely1, e ym(i;/\"l () A0y, ym)>)’

f€(g(¥)/z) and o:n—n, is consistent with 3 (where 6 is an arbitrary
composition of the ¢., i.e. § € WT, and (o (¥)/z) is the collection of k-tuples
which are permuted by o and then any number of them are replaced by z).

Now we may proceed to prove the main result of this section.
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THEOREM 3.2.2. Let T be an L(Q) theory and @u.(Xi," "y Xay, ¥1,°* %5 Yo )s
a €1 be (n., m.)-ary L(Q)-continuous relations. Then there is an L(Qnre.)
theory T*, such that TC T* and BO,---,B7, B8, , « € I, are in T*. (This is to
say that we can find a complete topological model (U, q) of T where each ¢, is
continuous in the product topology.)

Proor. Let (¥, q)be an L(Q) topological model of T where g is generated by
the definable open sets with parameters (one exists by Theorem 2.1). Define q7
as follows:

q % = the topology generated by
{(p(n O‘,—) ‘ 0. € q, 0, definable, ¢ € WT and ¢ maps into A"}.
i=1

We claim that
(SZI,QT,CI;,CI?,"‘) = (?I,q),
)

L(QXA
which implies the theorem, since (U,q%,9%,q9%,---) models BO,---,B7, BS,,
a € I, by a slight modification of Lemma 2.2.

We will show that they are L (Q) elementarily equivalent by showing that for
every subbasic open set 0* € g3, i.e. 0* = o(Ili-; G,), €. €Eq, ¢ € WT, thereisa
Y(xy,---,x,)EL(Q) with parameters from A such that @0*=
{a|(¥,q)E ¢[d]}, and also

(*) (S)/[, a)E Y, Xy, Xy 0y X Qi (x4, 70 -, Xa)

forall1=i=n

To show this we take ¢ € WT (one should notice, since all members of WT,
are definable and the inductive steps for WT, are definable, that each ¢ € WT is
definable), then ¢ (IIi-, 0;) is definable by

o(xlv ° '7xn) = 3}’1, Tty YM((:\I djx(y:) A ‘P(xl, X Y10t Ym)>

where each ¢ defines O,

Toshow (U, q)k VX, <, X, Xivr, ", X QX 0(x1, -+ -, X ) forall1 =i = n we
use the fact that each member of WT, is L (Q)-continuous by the hypothesis to
the theorem. From this it can be seen that each ¢ € WT is in fact L(Q)-
continuous. This is because composition, projection, maps of coordinates and
products of functions preserve L(Q)-continuity. Then we see that (*) is a
consequence of L(Q)-continuity and the definition of 6.



270 J. SGRO Israel J. Math.

Thus to return to showing the L(Q) elementary equivalence of (¥,q) and
U, a%,a9%, 9%, - ) we notice that (*) implies that in fact ¢ = g%. Hence we are
done.

Consider a group (G, -). Now take a topology 7 on G. We call (G,-,7) a
topological group if ~' and - are continuous maps into G. Other definitions of
topological-algebraic structures, e.g. a topological vector space, often appear in
mathematics. Using Theorem 3.2.2 we are now able to give an L (Q) axiomatiza-
tion of their L (Q) theories. For more details on topological groups, etc., see [5].

We formalize these comments in the following corollary.

CoroLLARY 3.2.3. Let T be an L(Q) theory. Then T has a topological group
model if and only if T is consistent with the basic L (Q) axioms, group axioms and
Qx¢ (x)— Qxe(f), where

e (yi?l’)-yf;‘(%- -yfr‘@)
x b

oc:k—kand e : k—>{1, —1}.

Proor. These axioms for topological groups are just the definition of L(Q)-
continuity for x7 and -.

CoroLLARY 3.2.4. Let T be an L(Q) theory. Then T has a topological abelian
group model if and only if T is consistent with the basic L(Q) axioms, abelian
group axioms, Qxe(x)—> Qxe(x™"), Qxe(x)— Qxe(x" - y).

Proor. Analogous to Corollary 3.2.3.
We will continue the study of the L (Q) theory and decidability of topological
abelian groups and vector spaces in Sgro [13].

§3.3. Using the completeness theorem for L.,,.(Qre.) in §1 we can give a
completeness theorem for L.,,.(Qre.) which is the infinitary logic formed by
combining L., with the quantifier symbols Q", n € w. L., is the infinitary logic
formed by allowing countably infinite conjuntions but only finite quantifiers.

In L,.(Qne,) the notion of (U, 91,02,93,° )= ¢@[as, "+, a.] is defined in the
natural way.

The axioms for L...(Qnre,) are straightforward and are adaptations to
L ...(Qje.) of those found in Keisler [7] and Sgro [12].

I. Axioms of L(Qhec.).

II. Aneol(e = ¥n) = (¢ = Avcathu).

OL (Avcothn) = hm, m € .

IV. A Q7% X U (X1, 5 Xm )= Q" X1, ", X Vipew W (X1, %, X))
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The rules of inference are modus ponens, generalization and the following
infinite rule:

From o, 1, Y, -« -, infer A .

n€Ew

We thus are now able to prove:

THEOREM 3.3.1. A sentence ¢ of L, .(Qre.) is consistent with 1, 1L, III, and IV
if and only if ¢ has a complete-topological model where each ¢., a €1, is
continuous.

Proor. This completeness theorem for L., .(Qre.) may be proved as in [12,
3.3.1]. The only observation we need to make is that when we obtain
M, at,q9%,9%,--+), an L'(Qrne,) model of BO,---,B7 and B8,, « €1, and ¢,
where ¢ is equivalent to an L'(Qn<.) sentence (by Theorem 2.4 and the fact that
L is countable), we obtain a topology, r, on % such that

&,ry = (Aaqia%a%0).
LAQleu)A)
Hence (A, r)F ¢ and is complete-topological.
Concluding this paper we note that the counterexamples to definability and
interpolation for L (Q) (presented in [12]) also work for L (Q%c.,) using the same
arguments.
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