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ABSTRAC~ 

In this paper we formulate a first order theory of continuous functions on 
product topologies via generalized quantifiers. We present an axiom system for 
continuous functions on product topologies and prove a completeness theorem 
for them with respect to topological models. We also show that if a theory has a 
topological model which satisfies the Hausdorff separation axiom, then it has a 
0-dimensional, normal topological model. We conclude by obtaining an ax- 
iomatization for topological algebraic structures, e.g. topological groups, prov- 
ing a completeness theorem for the analogue with countable conjunctions and 
disjunctions, and presenting counterexamples to interpolation and definability. 

w Introduction 

In [12] we developed a first order theory of topology using the notion of 

generalized quantifiers. In that paper we interpreted Qx~ (x) to mean that the 

set defined by q~(x) is "open".  The main result was a proof of a completeness 

theorem for topology from the following natural set of axioms: 

Ox (x = x), 
Qx ( x ~  x), 

Qx~ ^ Ox~-..-~ Ox(~  ^ ~b ), 

VyQx,~(x, y ) ~  Qx3y~(x, y). 
This paper continues the study of first order topology by presenting a first 

order theory of continuous functions on product spaces. Our approach to 

product topologies is via generalized quantifiers. We add to the first order 

language, L, new quantifier symbols Q"x l , . .  ", x, for each n @ to. The intended 

interpretation of Q"xl," �9 ", x , ~ ( x l , . . . ,  x , )  is that the set defined by ~(x,, �9 �9 x,) 

is "open"  in the n th product topology. 

This formalization enables us to show in w 2 the completeness of the theory of 
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product spaces with continuous functions using the following natural formaliza- 

tion of the topological notions: 

O ~  . .  ., x .  (x ,  -- x,) ,  

O " x .  " " ", x .  (x,  t x , ) ,  

O n X l ,  " " ", X , ~  A O " x , ,  . . . ,  xn~!l ~ Q " x , , .  . . ,  x , ( q ~  A ~b),  

VyO"x~, " ", x,,~ (x~, " ., x,, y) -~  Q~x~, " -, x, =lyq~ (x~, . . . ,  x~, y), 

O " x ~ , . . . ,  x,~, A O mXm+,,'" ", Xm+,4' ~ Q ~ §  x,.+. (9  A ~,), 

Q " X l ,  " . . ,  x n ~  ( x l ,  " ", x,~ ) -'-'-~ Q k x , , ,  " ", x,~ ~p ( x , , r  . . . ,  x , ~ , ~ ) ,  

where tr : m ~ m, , I~r[m]l = k and range o" = {i~ < . . .  < i~}; 

O nxl ,  " * *, Xn ~ (X l , " "  ", Xrt ) ~  ~r  ~ Xk O n-kXk+l,  " ~ ", Xn ~ (Xl,  ~176 ", Xtt), 

Q " y , , . . - ,  y.,t~(y,,---, y~)--* Q . . . .  kz~,--., z,,, yk+,,"" ", ym, 

( : ]y l ,  "" ", yk ( O ( y l , " "  ", y , , )A  ~ ( Z , , " "  ", Z,,, y l , ' "  ", yk))) ,  

where q~(xl,- �9 -, x,, y~,-- . ,  ym) defines an (n, k)-ary relation. 

We show this by adding enough open sets to the topology to insure that every 

"o pe n"  set in the Q"x~, . - - ,  x, interpretation is the union of open n-boxes. 

In w 3 we present several applications of the basic completeness theorem. The 

first is that any L ( Q ~ . )  theory which satisfies Q2xy ( x #  y), i.e. the Hausdortt  

separation axiom, has an interpretation where the topology is 0-dimensional and 

normal. One should notice the similarity of this result to a result in [12] where we 

showed that an L ( Q )  theory which is consistent with VyQx ( x #  y) has a 

0-dimensional normal topological model. 

Other  results include an L ( Q )  axiomatization of the L ( Q )  theories of 

topological groups and vector spaces, a completeness theorem for L~,~(Q~,~) 

and counterexamples to the interpolation and definability problems for 

L ( O : ~ ) .  

w I. Preliminaries 

Take the first order predicate calculus L with the identity symbol = .  We form 

the language L(Q2~,~) by adding to L new quantifier symbols O r for n E to. 

Thus L(Q~,~)  has the quantifiers (::Ix), (Vx),  and (Q "x , , - - . ,  x,)  for n E to. The 

set of formulas of L(QT,~,~) is the smallest set which contains all the atomic 

formulas and is closed under A, V, - - ,  (:IX), (VX) and (Q"xl, �9 �9 ", x,)  for n E oJ. 

We will use the convention that r  ", v,) denotes a formula of L(QT,~,~) 

whose free variables are among v l , . . . ,  v,. Sentences are formulas without free 

variables. 

Take 9~ to be a model of L and el, C_S(A")  and form (9~,q,,q2, q~, . . . ) .  
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(~--[, ql, q2, q3 , ' "  :) is called a weak model for  L(Q",~,). T h e  not ion of an k - tup le  

a ~ , . . . ,  ak E A satisfying a fo rmula  ~0 (Vl," �9 ", vk) of L ( Q " . ~ )  in (9.1, q L, q 2, q 3, '"  ") 

is defined in the usual m a n n e r  by induct ion on the complex i ty  of q~ and is 

deno ted  by 

( ~ , q l ,  q~,q3," " ") ~ q~[a~,...,a~]. 

The  O"xh '"  ", x, clause is def ined as follows: 

(2l, q,, q:,q3, �9 �9 ")l = (O"v , , , - . . , v , ,+ , )q~[aa, . . . , v , , , . . . , v  . . . .  " " ,ak]  

if and only if 

{ (b~ , . . . ,  b,,+,) I (9~, q ,  qz, q3, �9 �9 �9 ) 

1= q~ [al ,  ' '  ", a,,_~, br,, " " ", b~+,, " " ", ak ]} E q n, 

where  ~ (v~, . . . ,  v~+.)is a fo rmula  of L (Q" ,~ ) .  T h e  o the r  clauses in the definit ion 

are the famil iar  ones  for  L. It  is easy to check by induct ion on the complex i ty  of ~0 

that  if all the f ree  var iables  of q~ (v~ , . . . , v , )  are a m o n g  v ~ , - . - , v ,  and if 

a~ = b~ , . . . ,  a ,  = b, then 

if and only if 

(9~, cl,  q2, Q3, �9 �9 -)1 = q~[a~,...,a,] 

( ~ , q l ,  q2, q3," �9 " ) ~  r  

The  axioms for  L(OT~o,) are: 

i) Vx,,  �9 �9 x, V x ( ~  ~-  + ) ~  (Q"x~, . . . ,  x , r  ~ Q"x~,. .  -, x ,0 ) ,  

ii) Q " x , , . . . ,  x,q~(x~,.. . ,  x.),~--~ Q " y ~ , . - - ,  y. q~(y~,-.-,  y,) .  

The  rules of inference  for  L ( Q ~ )  are the same  as for  L, namely:  

Modus  Ponens:  F r o m  q~, q~ ~ q, infer 4,. 

Genera l iza t ion :  F r o m  ~ infer (Vx)q~. 

For  conven ience  we deno te  the sublogic L ( Q ' )  of L(Q,"~ . )  by L ( Q ) .  A m o r e  

explicit p resen ta t ion  of the L ( Q )  version of the following t heo rems  is found  in 

Keis ler  [7]. W e  will not  p resen t  the proofs  for  L ( Q 2 ~ )  since they are analogous .  

THEOREM 1.1. (Weak  Comple t enes s  T h e o r e m ) .  E is consistent in L ( Q ~ )  if 

and only if ~ has a weak model (N, cl l, q2, q3 , ' "  �9 ), where the elements of each q,  

are all L ( 0 7 , ~ )  definable. 

Let  L~,~ be the infinitary logic with countab le  conjunct ions  and  finitary 

quantif icat ion.  Then  L~(QT,~ , )  is the logic f o r m e d  by adding to L~,,, the  

quant i f ier  symbols  Q " x , .  �9 x, for  n E w. 
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M o r e  formally ,  the ax ioms and rules of in ference  for  L .,,o(Q,"~,~) are  just those  

for  L ( Q )  and L . . . .  For  the L ( Q )  version of the following theo rems  see [7]. 

THEOREM 1.2 (Comple teness  T h e o r e m  for  L,~,~(QT~,)). A sentence ~o of 

L~,~( Q",~) is consistent if and only if ~p has a weak model 

We now proceed  to present  several  definit ions and theo rems  which will be  

needed  in this paper .  

DEFINITION 1.3 (Tarski  and  Vaught) .  ( ~ ,  r~, r~, r3,- �9 �9 ) is said to be  an elemen- 

tary extension of (9~,Q~,q2, q 3 , - - . ) ,  in symbols  (9-l,q~,q2, q 3 , . . . ) <  

(~,r~,r2, r3, . . . ) ,  if and only if A C B and for  all fo rmulas  r  of 

L(Q" .~)  and all a , . . . ,  a .  E A we have  

(9~,C1,, q2, q,, �9 �9 ")1 = q~[a, , . . . ,a ,]  

iff (~,r,,r2, r3,. . .  ) ~  ~ 0 [ a , , . . . , a , ] .  

A sequence  (92~,Cl7,Cl7,q~,...), a < 7 ,  of weak  models  is said to be  an 

elementary chain if and only if we have  (9~., qT, q~, q~ , . .  �9 ) < (2[n, 0 0 ql, q2, q~,"" ") 
for  all a < / 3 < 7 .  

The  union of an e l emen ta ry  chain (~ , , , q ] ' , q~ ' ,q~ , . . - ) ,  a < %  is the weak  

mode l  

(9~,q,,q2, q3 , . . . )  = l,.J (9~,q~,q~,q~,- . . )  
a < ' y  

such that  ~l = U ~<~2(~ and q .  = {S C A "  I for  some  /3 < 7, /3 -_< a < 7 implies  

S fqA"~Eq~} .  

These  definit ions enable  us to state: 

THEOREM 1.4. Let (92~, q~, q~, q~,- �9 �9 ), a < Y, be an elementary chain and let 

(~, q 1, q 2, q a ,""  ) be the union. Then for all ot < Y, 

( ~ ,  q~, q~, q~,. . . )  < (gL ql, q2, q3,...). 

We now present the last model theoretic theorem needed for weak models. 

THEOREM 1.5 (Ldwenheim Skolem Theorem). 
a) Let (2I, q, ,q2, q3 , . - "  ) be a weak model of L ( O ~ )  and 1,I a cardinal such 

that I L I <- I,l <- ] A I. Then there is a weak model (~,  rl, rz, r~, . . . ) such that 

(~,r,,r2, r 3 , " ' )  < (~,q~,q2,  q 3 , ' " )  and [ B [ =  1,1. 

b) Let (9~,qt, qz, q 3 , . . - )  be a weak model of L(O~,~)  and l,l a cardinal such 
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that ]LI+IA  I <-~t. Then there is a weak model (~ , rx ,  r2, r 3 , - . . )  such that 
(9~,ql, ct2, q 3 , " . )  < (~,rl, r2, r3,... ) and IBl=~t. 

For  no ta t iona l  convenience ,  if ~ = (xl, �9 �9 ", xn) is a set of distinct var iables  and 

-- (zl ," �9 ", z , )  is a set of e l emen t s  of  some  model ,  then i ' E  (~ /~ )  iff for  each 

1 < i _-< n, t~ is e i ther  x~ or  z~. Thus  ~0 (t ')  has the obvious  in te rpre ta t ion .  Also we 

will regard  an ( m , n ) - a r y  relat ion (or funct ion)  as a fo rmula  

~r  xm, y l , ' "  ", y , )  which defines it as a relat ion.  

In o rde r  to  s tudy our  first o rde r  topo logy  we will now give the  necessary  basic 

definit ions and  theorems .  

Topolog ica l  not ions  are s tandard  as in [2]. Recal l  that  a topo logy  gene ra t ed  by 

a set, tT, of subsets  of a space  is the collection of arbi t rary  unions  of  finite 

in tersect ions  of 0". A collection of genera to r s  Yor the  p roduc t  topo logy  of 

qb = H ~ X ~  is {{fC ~ [ / ( / ~ ) E  U}[ U open  in X~, /.~ E M } .  If X = X , ,  T E M  
then rl x~  is called the topological  power  of  X. 

Let  f : X--> Y be cont inuous.  Then  

Concluding the basic definit ions and t heo rems  we presen t  the following basic 

mode l  theore t ic  definitions. 

DEFINI*ION 1.7. A weak  L (Q  ;~o) mode l  (9~, q 1, Cl 2, q 3, '"  �9 ) is called topological 
iff each ~1~, i ~ to, is a topo logy  on A t. (Notice that  an L ( Q )  model ,  (9~, el), is 

called topological  iff q is a topo logy  on A.)  

Defini t ion 1.8 now enables  us to s tate  the  final definit ion of this section.  

DEFINITION 1.8. A topological  mode l  (~ ,q l ,  q2, q3 , ' ' "  ) is called complete iff 

qk is the  k th  topological  p roduc t  of q l on A. For  nota t iona l  convenience ,  if 

(~ ,  cl 1, c12, cl3, �9 �9 �9 ) is a comple t e  topological  mode l  we abbrev ia t e  it by just writ ing 

(9s q), and the  remain ing  s t ructure  is unders tood .  

w The basic completeness theorem 

We will show in this section that  the theory  of con t inuous  funct ions (relat ions) 

on p roduc t  spaces has the following axiomat iza t ion .  

(B0) All ax iom schemes  for  L(O~,~o). 
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(B1) Q " x z , ' " , x .  (Xl = xl) .  

(B2) Q " x l , ' " , x ,  ( x l ~  xl). 

(B3) O " x l , "  " " , x , ~  A Q " x l ,  " " " , x ,  to-'* Q " x l , "  " " , x .  (q~ A to). 

(B4) V y Q " x a , "  " ", x .~o(x , , "  " ", x, ,  y ) ' *  Q"x~,"  " ", x ,  3y~(x l , ""  ", x,, y). 

(B5) O"x~, " " ", x,~p A Q " x , + l ,  " " ", x,+,. tO ~ Q " + " x l ,  " " ", x,+,, (~o A tO). 

(B6) O"xz ,  " " ", x .  q~(xl, " " ", x ,  )"'~ Qkx,l ,  " " ", xik q~(x,.(1), " " ", x,.r 

where t r : m ~ m ,  lo t [ ra i l=  k and the range of o" = { i l < , . - . , <  i~}. 

(B7) Q " x l , . "  ", x , q ~ ( x ~ , . . . ,  x.)----~ V x l , "  ", xk Q"-kXk+l,"" ", X,q~(X l , . .  ", X,) .  

( B 8 ) .  O m y l ,  "" ", y~ to(y , , . - . ,  y,)---~ 0 . . . .  kZ l , ' "  ", Znyk+l,"" ", yra 

( ~ y l ,  ~ ", yk ( tO (y l ,  ~176 ", y m )  ^ ~0 (Z l ,  ~176 ~ Z. ,  y l ,  ~ ", y k ) ) ) ,  

where ~p(zl, �9 �9 ", z., yl," �9 ", yk) defines an (n, k)-ary relation. 

Axioms B0-B4 formalize our notion of a topology and are the L ( O ~ o , )  

analogues of the axioms used by the author in [12] to show a completeness 

theorem for topological models. The meaning of B5 is that the product of open 

sets is open. B6 and B7 state that the permutation, projection, or consolidation 

of an open set is open. Finally, B8~ says that ~0 defines a continuous relation, i.e., 

the inverse image of a slice of an open set is open. 

One can see, without much difficulty, by using the definition of a product 

topology and continuous functions that B0-B8~ are true in every complete- 

topological model where ~0 is continuous. The converse of this is our complete- 

ness theorem and is stated as follows: 

I f  E is an  L ( O " , ~ )  theory a n d  ~o~, a ~ I, are (n,, m , ) - a r y  relat ions for  a ~ I, 

then  "g has  a comple t e  topological  model ,  where  each  relat ion ~o~, a E I, is 

con t i nuous  i f  a n d  only  i f  E is cons is ten t  with B 0 , . . . ,  B7 a n d  B8,.  for  a ~ I. 

Before we proceed to prove this we need several basic facts from topology and 

a theorem of the author [12]. 

Let (X, ~-) be a topological space. Then if Y C X and Y is not open, there is a 

cy E Y such that if ~Y E ~" and ~Y C_ Y then cy ~ 8. In other words, any non-open 

set has at least one point which is not in any open subset of it. 

Using this fact we proved in [12] the L ( O )  analogue of the following 

completeness theorem. 

THEOREM 2.1. L e t  E be an  L ( O".~. )  theory. T h e n  E is cons i s ten t  wi th  B 0 - B 4 / f  

a n d  only  i f  E has  a topological  m o d e l  (9.1, q~, q2, q3, '" �9 ) where  each  q , ,  n ~ oJ, is 

genera ted  by the de f inable  O "  open sets (wi th  p a r a m e t e r  f r o m  A ) a n d  19J l >= I L I. 

Suppose we have a topological model (91, qx, q2, r �9 �9 �9 ) where each q,, n E oJ, 
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is generated by the Q"  definable open sets and (92, q~, q2, q3," "" ) models B0-B7. 

Also assume q~,, a ~ I, are definable relations of (92, qx, q2, q3, '" ") which are 

"continuous",  i.e. B8,., a E / ,  holds. Then assume we are given {q/a}0~o, a 

collection of subsets of A. 

If we add the {q/n}o~o to q~ and still expect to have a model satisfying (in the 

expanded language with a Uo for each aria) B0-B7 and B8,o, a E I, what do we 

need to add to q,, n E to ? The following is the answer. 

Let q~, a E / ,  be a collection of (n~, m~)-ary relations which satisfy B8,., a E I. 

Let ~0~' = {(/~ ~) I (ti, G) ~ q~} be the inverse relation of ~0~, a ~ I. We then define 

a collection of (definable) relations as follows. 

WTo = {r t.J {identity relation on each A",  n E to} 

WT.+I = WT. U{r162162 maps n~ into n. 

where r E WT.} 

U {r (x~,. �9 x.., y~r �9 �9 y=r cr maps m. into m. 

where r E WT.} 

u {~0 ( x , , . . . ,  x,,, y , , . . . ,  y . . , )^  q , ( z , , . . . ,  z.., t , , . . . ,  t.,,) 
where ~0, ~0 E WT. } 

U {~ (x,, �9 �9 c , . . . ,  x.,, y l , ' "  ", y,,,) 

where ~0 E WT. and c an individual constant symbol} 

u { ~ ( x . . . . ,  x.., y , , . . . ,  c, �9 �9 y...) 
where q~ E WT. and c an individual constant symbol} 

u { ( 3 y , , . . . ,  y~ ( ~ ( x , , . . . ,  x.,, y , , . . . ,  y,,,) 

^ qJ(y~,..-, y.., z l , " . ,  z.,,))), k =< mr, k =< m,, 

i.e. the composition of the two relations, where q~, ~ E WT.}. 

Let W T  = U.~, .  WT.. 

The'intuit ive meaning of W T  is that it is the smallest collection of definable 

relations containing WTo and closed under composition, projection, products 

and mappings of the variables. Hence, since each q~ satisfies B8,., a E I and 

(92, ql, q2, q 3 , - " )  models B0-B8,. ,  o r E / ,  we have that each q~E W T  takes 

definable open sets to definable open sets. 

Now define q *, n E to, as follows: 

q* = the topology generated by {q~(l-I~_l Bj)] where each Bj E qk, or Bj = q/~, 

for 1 <-j <= k, q~ E W T  and ~0 maps into A"}. 
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LEMMA 2.2. Let (92, q*, q*, q* , . .  �9 ) be as above. Then (92, q*, q*, q * , . . .  ) 

models B0-B7 and B8,., a ~ L in the expanded language containing a Uo for 

each ql~. 

PROOF. Since each ct*, n E w, is a topology we have that (92, q*, q*, q 3*,--- ) 

models B0-B4. To show B5 let us take ~7" ~ q ~  and ~7" Gq* .  Now ~7" = 

U~E~7* and 6"  = U 0 ~ o ~  and ~7'~ x ~7" = U~.O)~E• (7" X ~7~ where each ~'*, 

~7~ is in the generating set. Since ~*, ~7~ are in the generating set, ~ ' ~ -  

n ~ I ~ , ( I I B ~ )  and ~7~= n "~ ,=1 q~, (H B;). Thus 

e*~ x 6~, = n q~, ((n B,) x (n B;))  

where ~o8 E WT. This uses the fact that the product of intersections is the 

intersection of a product. Hence, ~?* x ~7~ E q ~+~. 

If G * =  U ~ ' * G q * ,  and tr:m---~m,]tr(m)]=k and rang t r =  

{i~< . - .  < &}, then 

~7" = {(t~(,),"" ", t,.(.))[(tl,"" ", t . ) E  ~*} 

= U (6"~)" ~ q 
aEl 

since o" applied to the identity map on n is in WT and ( n  6" )  ~ =  o (6"" ) .  

Hence we have B6. B7 follows similarly, since the projection of the identity is 

also in WT and a projection of an intersection is the intersection of a projection. 

Given the relation ~ we need to show B8,,  holds in (92, q*, q * , q * , . . . ) .  

Suppose ~7" = U ~ D ~  E q*,, ~7~ a basic open set of q*, i.e., ~7~ = n 60~, (II Bj). 

Then 

0 " *  = { ( r  ", t~)), t~+ l , ' "  ", t , ) [  whe re  ( t , , . . . ,  t , )  ~E ~1"} 

= U ( 6 ~ )  *o ~ * q n+ra--k 
t3~D 

by construction of WT and the fact that 

~ o  = ( n  ~ ( n B j ) )  ~ = n ( ~ ( n B j ) ~ ~  = n ~ (I IBj) .  

Thus we have shown the lemma. 

Now we will proceed to prove the main completeness theorem by presenting 

the following lemma which tells us that for each t3 E ~ (an open set ia the Q" 

interpretation) we can add a II7=1 o//. (an open n-box) to the Q" interpretation 

such that t? E rI7=1 ~ c_ ~7 and still keep B0-B8,a, a E L 
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LEMMA 2.3. Let  E be an L ( Q 2 ~ )  theory consistent with B0-B7 and  B8~,, 

ct E I. I f  ? = ( q , . . . , c , )  is an n-tuple so that r  . , c , )  and  

Q " x ~ , . . . , x , q ~ ( x l , . . . , x , )  are consistent with ~, then V;(c,), QxV~(x) ,  1<-i  <= n 

and V X l , "  ", x ,  (A~'=1 V(x,)--> r  x , ) )  is consistent with ~, and  B0-B8~., 

ot E I. Here the V~(x), 1 <- i <= n, are new one place predicate symbols. 

PROOF. We need only prove this for countable ~ since then, by using Theorem 

1.1, we have it for all E and B0, . . . ,B8~. ,  a @ I .  Let (gJ, q~,q2, q 3 , - ' - )  be a 

topological model of E generated by the definable open sets. This is possible 

since E is consistent with B0-B4 and Theorem 2.1. 

We want to define ~ C _ A ,  l_-<i_-<n such that 6~EII~'=I~C_ 

[~o (x,, �9 �9 ", x,)] ~ and forming (~, q *, q*, q * , . . -  ) from the {T'~}I~,~. we 

have that 

(~][, q*, q*, q*,"" ") ~ (~,  ql, q2, q3,"" "). 
L ( Q~E~)(A ) 

To do this we will construct the ~r's by induction. 

Suppose we have picked z~,,. . . ,  z~ for each ~ so that 

(-I {z,,..., z~,}c_ [ ~ ( x , , . . . ,  x,)]  ~"'"''" ..... ' 
i = 1  

a n d ( c ~ , - . . , c ~ ) = ( z  1 1 , - . . , z l . ) . N o w t o p i c k t h e z ~ + ' , l < i < n w e w a n t t o i n s u r e =  = 

that 

I~I {z 1,, -. ., z k,, z,  T M  } c [,p (x,, . . . ,  x , )]  T M  
i = 1  

and also to somehow insure that if cr(x~, �9 �9 xm) is a formula of L ( Q " ~ )  so that 

(9~,q,,q2, q 3 , ' ' ' ) ~  ~Qr~x~ , - - - ,x , , tT (x l , - . - , x~)  

then we do not get (9~,q~*,q~,q~, . - . )~ Q " x l , . . . , x , , o ' ( x l , . . . , x , , ) .  That is 

['r(x,,'",x,,)]~""""~'";' ~r U C~ 
/ 3 E D  

where 6~ E q* and is a basic open set. 

We will then assume that we have some countable enumeration of basic open 

sets, i.e. 6~ = n qb, (liB;), and t r ( x l , . . . ,  x,,) as above. We claim that the z~ +' 

can be picked such that 

(*) 1-] {z ' , , - . . ,  z k,, z ~ +'} c_ [~ (x,, . . . ,  x. )]'~'" ........ ' 
i = 1  
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a nd  

(**) if ~ C_ [(r(x,,  �9 �9 x.)](~'~ 

then  the re  is an ~7~ such that  

~ c_ ~, c_ [ o ( x , , ,  x.)] (',",'~ 

and 6~ EE q ,,, 

This  is d o n e  as fol lows.  T o  h a v e  (*) we must  h a v e  

~§ " z~.+')E C = n n ' " ." , ," , ,%, '  - . 1 k 

w h e r e  {~({)}(~'""":'%" )={(a,, '",a.)l(~,q,,q2, q~,'" )r q~(k,,...,k,) w h e r e  

k~ = a~ if t, = x,  k~ = z~ otherwise}.  

This  fol lows,  s ince if 

Z : ( '~1 ,  ~ ~ ~ Z 'n)  ~ l ~ I  { z ' l i ,  ~ " ", z ~ + l } ~ [ ~ ( X l , ' ' * , X n ) ]  (~['ql't~2,~13,''') 
i= l  

then  ~? E {q~(i)} (~'~'"~'%'~. C o n v e r s e l y ,  s u p p o s e  tha t  we  h a v e  ~? E C, t hen  given 

any  ;?2E I/7=~{z~, . .  . , z~}  and  any  t 'E(~?/~?z) we h a v e  

/ ' E  [,p ( x , , . . . ,  x . )]  '''~176176 

T o  ob t a in  (**) we can a s sume  wi thou t  loss of  genera l i ty  tha t  6 ~ =  

n q b , ( I I ] - ~ B i )  and  B j = ~  for  l < - j < n  a n d  B~ = ~78, E q , ,  for  i>n.  T h u s  

c o n s i d e r  O ~0,, ( C  x I]~,_-,, ~sj). If  

( ' )  n ,p~, c x ]-[ t:,, - [ , ~ ( x , , . . . ,  x.)l".",."~.",. ' ~  o ,  
i= rn  

t hen  let (z~+l, . .  k+, �9 , z .  ) E C s o t h a t  

( ( ) )  n r <z,~§ �9 z ~+'> • I-I r - [ ~ ( x , , .  �9 x,)](~.",."~.-, > ~ 0 .  
j = m  

O t h e r w i s e  let z~ § = z ~ 1 < i = < lIj=m ~ ) E  q m and  ,, = n and  we  get  tha t  n (p~, ( C  • ", 

�9 - x,.)] (~,",,"~,%,'''> which  suffices s ince II ,{zl ,  . .  ., z~}C_ C. is a subse t  of  [(r(x~, ., 

N o w  we will s h o w  that  if ~ = {z~ I k E oJ} then  we have  the  conc lus ion  to the  

l emma .  
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~ % _ c [ ~ ( x , , . . . , x , ) ]  ~'",'" ..... ~ 
i=1 

by (*). To show 

(gd, q * , q * , q * )  - (9~,q,,q2, q3 , - . . )  
L(Q~E~)(A ) 

we use induction on the Q ~ quantifiers. The only ditticult case is the Q '~ clause. 

Since q~ C_ q* for all i we have that if 

(gd, q,,qz, q3, �9 �9 . ) ~  Q ~ X l , - .  

then 

�9 , x , , x ( x , , ' "  . , x , , )  

(gJ, q * , q * , q ~ , - - . ) l  = Q " x , , . . . , x , , , X ( X , , - . . , x , ,  ). 

So suppose that 

(9~,q,,qz, q 3 , . - - ) ~  ~ Q"x , ,  

and 

Hence 

�9 . . , x . , x ( x , , . . . , x , . )  

(9~, q 1", q* ,q* , .  �9 . ) r  O m x , , . . . , x , , x ( x , , . . . , x , . ) .  

[ X ( X l , . . . ,  x,)]  " .......... " =  [ x ( x , , . . . ,  x ,  )] , ' , , ; ,+; .  --, 

= U e~;  
/3~D 

0~, f l E D ,  a basic open set of q*. Thus by (**) each G~C_~oC 

Ix(x1, '"  ", x,,)] (~'"''"2'"~') and G0 ~ Ore. So U0~o~?~ = U ~ o ( ? ~  = 

[x (x~ , . . . ,  x,,)] (*'" ..... "~""), which is a contradiction. Hence the lemma is shown. 

Now we are able to prove the basic completeness theorem. 

THEOREM 2.4. Let ~ be an L(Q~E~) theory. Then ~ is consistent with 

B0,.  �9 B7 and B8~, a E I, if and only if Y. has a complete topological model 

(~,  r~, r2, r3," "" ) such that each q~, a @ I, is continuous. 

PROOF. (if direction) Straightforward since B0,- �9 B7 and B8,,, a ~ I are true 

in every complete  topological model where the ~ ,  a ~ I, are continuous. 

(only if direction) Assume E is consistent with B0, �9 �9 B7 and B8,,, a E I. 

Then by Theorem 2.1 we have a topological model (9~, ql, q2, q 3 , " "  ) of E and 

B 0 , . . . , B 7  and BS,o, a E I such that I~I_->IL I. By repeated applications of 
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L e m m a  2.3 to the comple te  theory  of (2I, q 1, q 2, q 3, �9 �9 �9 ) we obta in  a topological  

mode l  (~ ,  r~, rz, r3, �9 �9 �9 ) of `2, B 0 , . .  -, B7 and B8~o, a E / ,  such that  I ~  I = ]9~1 and 

if 

/ 7 ~  [,p (x , ,  . . ., x . ) ] ' " ' , "~"~ '  ' E r, 

then there  is a ~ 1 , ' "  ", ~' ,  E rl such that  

g E  I~I ~', _c [,p (x, ,  . . -, x . ) ]  '~ ' ' , ' ' , ' ' 3 '~ .  
i = l  

H e n c e  (~ ,  r~, r2, r3 , - . .  ) is comple te .  Not ice  that  by T h e o r e m  1.5 we can take  

12[[ = I~ for  any N -> I L l  and thus I ~ ]  = 12[] = ~. 

If we omi t  B8~,, a E I then we obta in  the following interest ing corol lary.  

COROLLARY 2.5. Let `2 be an L ( Q " , ~ )  theory. Then `2 is consistent with 

B0, .  �9 B7 if and only if `2 has a complete topological model. 

PROOF. This is a direct  appl icat ion of T h e o r e m  2.4. 

COROLLARY 2.6. (Compac tness  T h e o r e m ) .  Let `2 be an L ( O 2 ~ )  theory. Then 

`2 has a complete topological model where each ~o~, a E L is continuous if and only 

if every finite subset of "2 has a complete topological model where q~, a E L is 

continuous. 

PROOF. An easy appl icat ion of the basic comple teness  theorem.  

COROLLARY 2.7. The set of L (O 7,~) sentences valid in every complete topologi- 

cal model (with ~ ,  a E L continuous) is recursively enumerable in the language.  

PROOF. T h e o r e m  2.4 shows that  a sen tence  is p rovab le  f rom B 0 , . . - ,  B7, and 

B8~,  a E L if and only if it is valid, so we are done.  

We  can now prove  a L 6 w e n h e i m  Sko lem T h e o r e m  for  comple te  topological  

models  with cont inuous  funct ions using the me thods  of T h e o r e m  2.4 and [12]. 

THEOREM 2.8. 

a) Let (9.1, q) be a complete topological model where each ~o~, ot E L is 

continuous. Then for any I~ >- I L I + [A I there is a complete topological model 

(fO, r) such that (9~, q) < (~, r ), ] B I = N, and each ~o~ is continuous in (~,  r ). 

b) Let (9~,ci) be a complete topological model where each ~o~, ~ ~ L is 

continuous. Then for any I L [ <= l,l <- I A I there is a complete topological model 

(~ ,  r) < (~l, q) such that [ B I = N, and each q~, a E L is continuous in (~,  r ). 

PROOF. 

a) By the me thods  of T h e o r e m  2.4 (Comple teness  T h e o r e m )  and the r e m a r k  at 
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the end of its p roof  we can find a comple te  topological  mode l  (92, q) < (~ ,  r) 

such that  I B t = 1~ and each ~ ,  a E L is cont inuous  in (23, r). 

b) Let  f L  q~ a fo rmula  of L ( Q ~ ) ,  be as in the au thor ' s  pape r  [12]. Tha t  is, for  

each formula ,  q~(Xl , . . . , x , , y~ , . . . , y , , ) ,  of L(QT,~) we add a new funct ion 

symbol  f ~ ( Y h ' "  " ,y, , )  for  1 =< i < n and given any fo rmula  

let 0 ~ be 

Vy~, 

~b(x~, �9 �9 x,, z~, �9 �9 Zk) 

"" ", y,,, zt , '" ", Zk ( Q " x l , . . . ,  x , , )$(x , , . . . ,x , , ,  zl," .., Zk)A 

Q " x , , . . . ,  x ,~(x~, .  �9 -, x,, y , . . . ,  y,,) ^. 

V x , , . . . ,  x~ (q4x, , ""  ", x,, z , , . - . ,  z ~ ) ~  , t , ( x l , ' '  ", x,, y , , - . . ,  y,,)) 

- -~p (f~ ( y , , - . . , y , ) , . . - , f * ,  (y,, - . ., y , ) ,  y,, . . ., y , )A 

tO(f~ (y , ,""  ", y , ) , " "  ", f~, (y , ,""  ", y ,) ,  Z , , ' "  ", Zk)). 

Tha t  is, if ~ defines a non -open  set in A "  then ( f L ' " , f * , )  is a point  of  g, 

which is not  in any open  subset  of it. (This was used in the p roof  of T h e o r e m  2.1, 

confer  [12].) Since 92 is a comple te  topological  model  where  each ~,,,, a E I, is 

cont inuous  we can expand  L to an L '  and 92 to an 92' so that  for  every 

( x , , ' . . ,  x,, y~, . . . ,  y,,) ~ L'(Q",~_~) we have  that  there  are V~ (z,  x,  y , , - .  -, y ,) ,  

1 =< i -< n, such that  

~o" = V x l , . . - ,  x., V y l , - . . , y ~  (Q"x l , . .  ",Xn~O(Xl,''',x,, yh "" ", y,,) 

( A L ,  V~ (x,, x,, y , , "  ", y, )) ^ V z , , " . ,  z .  ( A ",_-, V~ (z,, x,, y , , . . . ,  y,  ) 

--. , p ( z , , . . . ,  z., y , , . . . ,  y , ) ) ^  ( AT-~ Oz, V~(z,, x,, y l , ' "  ", y , ) ) ) )  

holds. 

This says that  each point  in a ~0 definable open  subset  has a definable n -box  

a round  it conta ined  in the open  set defined by q~. Thus  let 92* = (92', f'~L,~o~)). 

Then  (92*, q) has an e l emen ta ry  submode l  (~ ,  r), I B[= ~, by the L 6 w e n h e i m  

Sko lem T h e o r e m  for  weak  models .  H e n c e  if r* is the topo logy  gene ra t ed  by the 

L'(Q",~)  definable e l emen t s  (with pa rame te r s )  of r we are done.  

Note  that  if we let 

K((92, q ) ) = i n f l l / 3 / : f l  is a basis for  q} 

then we have  shown that  we can obtain  a model ,  (~3, r*), where  r ((2), r*)) =< I ~  1. 
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w 3. Applications 

In this section we will present several applications of the completeness 

theorems and the techniques used in their proof. 

w contains the proof that the L(O:~) theory of 0-dimensional normal 

(paracompact) complete topological models is equivalent to the L (Q:~,~) theory 

generated by Q2xy (x~ y) which is a logical formulation of the Hausdorff 

separation axiom. As in [12], if we apply this to countable theories we obtain a 

metrizable model. 

In w we show that we can extend L (O) theories with "coordinatewise - 

continuous" functions to L (Q ~ )  theories where the functions are continuous. 

As a corollary to this theorem we present an L(Q) axiomatization of the theory 

of topological groups and vector spaces. 

Concluding this section we prove a completeness theorem for L ~ , ~ ( Q ~ )  

which is formed by combining L ( Q ~ )  with L .... 

w We will now present several definitions and theorems from topology 

which will permit us to present the main theorem of this section. 

DEFINITION 3.1.1. A topological space is called Hausdorff if every pair of 

distinct points can be separated by disjoint open sets. 

DEHNmON 3.1.2. A topological space is called regular if each point and 

disjoint closed set can be separated by disjoint open sets. (We assume that points 

are closed.) 

DEFINITION 3.1.3. A topological space is called normal if every pair of disjoint 

closed sets can be separated by disjoint open sets. (Again assume points are 

closed.) 

DEHNmON 3.1.4. A topological space is called O-dimensional if its topology is 

generated by sets which are both open and closed (clopen). 

Let (X, ~-) be a topological space. If we define the diagonal of X, in symbols 

A(X), to be {(x~, x2) l x~ = x2} then we can show the following topological result. 

A topological space (X, ~-) is Hausdorff if and only if the diagonal of X is 

closed (in X2). 
This now enables us to state and prove that the L ( Q : ~ )  theory of 0- 

dimensional normal complete topological models is the same as the L ( O ~ )  
theory of Hausdorff models. One should note that the Hausdorff separation 

axiom is equivalent by the above remark to Q2xy (x~ y). 
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We  first prove the following impor tan t  l emma which is analogous  to L e m m a  

2.3. 

LEMMA 3.1.5. Let "2, be an L(QT,~)  theory consistent with B0-B7  and B8~,, 

ct E L Then if "2, is consistent with O2xy ( x ~  y), Ox ~ tp(x), Ox ~ ~(x) ,  and 

~ B x ( 6 ( x ) n ~ ( x ) )  (i.e. ~, and ~ define disjoint closed sets) then 

Vx(~(x)---, U *'~ (x)), Vx(,~ (x)---, - U*" (x )), OxU*" (x ), and Ox ~ U*"(x ) are 

consistent with ~, B 0 , - . . , B 7  and B8~,, a ~ I. Here U*'~(x) is a new one place 

predicate symbol. The conclusion means that U *'~ and ~ U*'" define open sets 

which separate the sets defined by ~b and ~. 

PROOF. Again  we only need  to show the l emma for  countable  E; then using 

the compactness  theorem,  we obtain  it for  all ~.  Thus  let (9.1, c11, Oh, q3, �9 �9 �9 ) be a 

countable  topological  model  of  E, B0, .  �9 -, B7 and B8,~, c~ E / ,  where  the cl~ are 

genera ted  by the definable open  sets. 

Aga in  as in L e m m a  2.3 we want  to fo rm (9~, q T, cl *, q ~ , "  �9 ) f rom a oR, A - oR 

and (9/, q ,, q 2, q 3 , " "  ) such that [qJ](*'""""",' ') C_ oR and [q~ ](*'""",'"~' ) C_ A - oR and 

(9~,q*,q~,q3*,...)- (~,q,,q2, q3,'"). 
L ( Q ~ ) ( A )  

Also, as in L e m m a  2.3 we will define oR and A -  oR by induction.  Thus  

suppose we have defined rl, �9 �9 n for oR and s~,. �9 sk for A - oR. Now we will 

define an rk+l for  oR and an sk+, for A - o R  so that  

[~(x,, '",x,)]~"*;'"; '";")~ CI ~ ,  
~I~D 

~7~ a basic open  set of q*. 

We,  again as in L e m m a  2.3, assume that  we have a countable  enumera t ion  of 

the potent ial  basic open  sets, i.e. ~ (I-I~=~B,), and the t r ( x l , . . . , x m ) ,  defining 

non-open  sets. It is claimed that  rk+l and sk+l can be picked so that  

(*) r~+,, sk+, ~ { r , . . . ,  r~, s~ , - . . ,  sk} 

and r~+~ g sk+~ E A - [~ v ~](a'"~'"='"~'). 

r~+~ and sk+~ also have the proper ty  that  if ~7~ (the k + 1st basic open  set in the 

enumera t ion)  and ~r(x~, �9 �9 xm) (the k + 1st formula  defining a non -open  set) are 

such that 

(**) e~ _c [~(xl , . . . ,  x,)] `"'~''~176 

then there is an ~7~ ~ q ,  where  ~7~C ~7~ C [ t r ( x l , . . . ,  x,,)] (~'*,'*~'*~''''). 
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We  do this as follows. In ana logue  to L e m m a  2.3 to obta in  (*) we must  have  

(rk+~, sk+l) E C = (D x D ) -  A, where  

D = (A - ([~ v ~b]'~'"""%"~ U { r , , - ' . ,  rk, s , , ' -  -, sk})). 

C is open  since [q~ v qt] ~'" ' '"~'%'), and each s, r, 1 _- i _-< k are closed in q ~ and  h 

is closed in q2, because  the q~ topo logy  is Hausdor l I .  

W e  obta in  (**) as in L e m m a  2.3. It  can be assumed  wi thout  loss of genera l i ty  

(by the definit ion of WT) that  ~7~ = f3 ~ ,  (H~-~ B~) and B~ = q/ and B= = A - 0// 

a n d B j = Q ~ q . l  f o r j = > 3 .  T h u s i f  

( )  n,~,,, c x I -  I ~ - [o ' (x, , . . . ,x, , ) ] ' " ' " , ' " , '~ 
]=3 

then we take  (rk+~, sk+~)E C so that  

r~~ (rk+l'sk+l) x i=k+lFI ~/ ' )  --  [O ' (Xl '  " " "' Xm)] (~'ell'q2"q3'''') :~ ~ "  

Otherwise  we let (rk+l, s~+0 be an arbi t rary  m e m b e r  of C. 

T o  finish the p roof  of  the l e m m a  we let 0// = {rl}~= U [~b] ~'",'.2'~''''~. Then  we 

claim that  0"// and A -  0// separa te  [~b] ~'"''~2'%''') and [q~]~'""*"%""). This  is 

s t ra ightforward,  since the sequences  {r~}~,~ and {s~}~,. were  p icked to miss bo th  

[qs] ~'",'"~'%''~ and [r ]~'*,'%'%""). Also by (*) and the fact that  C CI A = O we know 

that  {r,},~.N {s~}~.= 0 .  

Let  (92, q*, *' * -  q : ,q3 ,  " ' )  be  the mode l  f o rmed  f rom 0//,A_0-t/ and 

(?;[, qz, q2, q3, '"  ") as in L e m m a  2.2. We  will show that  

(9~, qt, q;, q ; , . . . )  .-= (9~, q,, q:, q 3 ,  ).  
L (O ne~)(A ) 

T o  show this we use induct ion on the O "  quantifiers.  Suppose  we are given 

Q"xz ,"  ",x,,,X(xl," .,x,,,). Then  since qi C_q* for  all i we have  that  if 

(9~, ql, q2, q3, �9 �9 ") ~ O"x, , ' " ,x , , x (x~ , ' " ,x , ,  ) 

then 

(9~,q*, q*, q*, .  �9 . ) r  O"x,,...,x,,x(x,,...,x,,). 

T o  show the converse  suppose  that  

(~,  q,, q~, q3 , . . .  ) ~ ~ O ' x , , . . . ,  x , , x ( x , , . . . ,  x, ,)  

and 
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Thus 

(92, q * , q * , q * , - . . ) ~  Q " x ~ , . . . , x , , x ( x a , . . . , x , ,  ). 

[x ( X l , . . . ,  x,, )]"", '~ ' = [x (x,, �9 �9 x,, ) ]"" : ' "~ '~ 

= U e ~ ,  

6~ a basic open set. By (**), for each fl ~E D we have 

e*~ c_ e~, c [ x ( x .  " " ", x~)] '~'~''~ 

and 6~ E q ~. Hence 

U G = U e*~=[x(x, , '" ,x~)l  '~'" ..... "~"~. 
~eD ~ D  

This is a contradiction so we are done. 

We now have enough machinery to prove the main theorem of this section. 

THEOREM 3.1.6. Let ~, be an L ( Q2~,) theory and K an infinite regular cardinal. 

Then "Z is consistent with B0,- .  -, B7, B8,~, ct E L and Q2xy (x r y) if and only if 

E has a O-dimensional normal complete topological model of cardinality K where 

each %, a E L is continuous (complete in the model theoretic sense). 

PROOF. (if direction) Easy since normal implies Hausdortt. 

(only if direction) This proof is analogous to the proof of Theorem 3.1.2 of 

Sgro [12]. 

Let (92, q 1, cW2, q 3," �9 �9 ) be a topological model of B 0 , . - . ,  B7, B8~~ a ~ / ,  and 

Q2xy (x ~ y), where the q~ are generated by the definable open sets. By applying 

Lemma 3.1.5, Theorem 1.4 (union of elementary chains), and Theorem 2.4 r 

times we obtain a regular 0-dimensional complete-topological model, 

(92, q*, q *, q *,- �9 �9 ). (Note that our procedure does not work for pairs of closed 

sets.) 

Since (92*, cl *) is complete-topological and regular we can expand it by adding 

new function and predicate symbols from a new language, L*,  such that 

(92", f~,_.~o~.) ,  V~ (z,, x,, y , , . . . ,  y,, )~,- .~o-~.~, U ~" (x, y) ,  q *) 

models T, VxOyU(x ,  y), VxOy  ~ U(x, y), for each tb, ~0 E L*(QT, e~,) 

vy(Oxq,(x)^ q,(y)--, 3z(U(z,  y )  ^ Vx(U(z, x)--, ~0(x))), 

and ~0 ~ and q~ v (as in Theorem 2.8). The qJ" and q~ V's guarantee that the weak 
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model  is a comple te  topological  model.  The  o the r  formulas  state that U ( x ,  y)  

defines a collection of c lopen sets which insure that the topology is 0-dimensional  

and regular.  

We will now define an e lementa ry  chain of L * ( Q $ ~ . , )  comple te  topological  

models,  ( ~ ,  r~), /3 < x, as follows: 

If a = 0 then (~0, r0) = (~*,  f ' ,  V ~, U ~, cl *) as above.  

If a = /3  + 1 then we define a theory  To to be: 

T~ = 

Th((~, r~)) 
m q~(c~, ' '  ", c , ,  b~,-" ", bk) where  

(f~o, r o ) ~  - O "  x , ,  . . ., x , , ~ o ( x , , .  . ., x,, ,  b, ,  . . ., bk ) 

~b(c~,. . . ,  c 7 )  where  

(f]* ( b , . . . ,  b k ) , ' '  " ,fZ (b~ , . . . ,  bk)) E [~b(x~,.. . ,  x, ,)]~%": and 

( ~ , , r o ) ~  O~" x , , . . . , x , , ~ b ( x , ,  . .  . , x , , ) .  

T~ is consistent  since if 

(f]' (b,, �9 �9 ", bk ) , "  ", fZ (b,, �9 �9 ", bk )> E [~b, (x,, �9 �9 ", x., )] '%'.) 

f o r O = i  < n  then 

Thus  

(f]' (b~, �9 �9 ", b k ) , "  ", f~  (b~, �9 �9 ", bk)> E ('~ [~bj (x~, �9 �9 ", x,.)]'m-'sJ. 
O~i~n 

( 7  [~bi(x, ,"" ", x ~ ) ] ' % ' e ) ~  [ ~ ( x , ,  �9 �9 �9 x, . ,  b , " "  bk)]  ~%'~). 
O.gi~n 

Take  ( ~ ,  r~) to be a model  of Ta of cardinali ty K, where  ra is the set of 

definable open  sets. The  purpose  of ( ~ ,  r~) is to enable  us to take infinite 

intersect ions of open  sets and to make  them open.  

If a is a limit ordinal  then we take ( ~ ,  r~) to be the union of the e lementa ry  

chain ( ~ ,  r~), /3 < a. 

Let  (~ ,  r)  be the union of the e lementary  chain ( ~ ,  ra), a < x. By T h e o r e m  

1.4 and an easy observat ion 

( ~ ~  < ( ~ , r )  for  a < r .  
L *(Q~.~) 

Define r* to be the topology genera ted  by {~tb.~)lb E B, /3 < K}, where  
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~7(b.o) = ("l,~,(b.~)~? and e ( b ,  f l )  = {~7 C B [ b ~ ~ and ~7 is a definable clopen set 

of r with parameters from ( ~ ,  r~)}. 

We claim that 

(~3, r) -- ( ~ ,  r*). 

This is most easily shown by induction on the complexity of the formulas with 

parameters in B. The difficult case is the Q~ clause. Since r c_ r* we have that if 

( ~ , r ) ~  Q m x ~ , . . . , x m ~ ( x t , . . . , x , ~ )  then ( ~ , r * ) ~  Q m x ~ , . . . , X r ~ ( x l , . . . , x , , ) .  

Suppose that (?3, r ) ~  ~ Qmx~ ,  . . ., x,~ 9 ( x , ,  . . ., xm ). Then if 

while 

we have 

[ ,  ( , , ,  �9 �9 x . ) l  '~' ' '  = [ ,  (x,,  �9 �9 x . ) ] ' ~ " " ,  

(~,r*)~ O"xl,...,x,,~o(x,,...,x,,) 

which implies 

st 

[~(xt . - - - ,x , . ) ]  (~'~*)= U I-[ G ( b , , f l , ) .  
t ~ T  i = 1  

sj 

( f~  (b~, " ", bk ), " " ., f~,(b~, . . ., bk))@ I-I (~(b,,e,) 
i = 1  

for some j ~ T. However, 

sj 

1-[ e~b,,~,,= VI [ ~ , ( x , . . . , x m ) l  ~ ' ~  
i = 1  "y~EG 

where I G I < K. This follows from the fact that a cartesian product of intersec- 

tions is the intersection of cartesian products and that a finite cartesian product 
of definable sets is definable. 

Thus for some 0 < K, 0 a sufficiently large limit ordinal, we have from the 

definition of T~, a < K, that 

(~o, ro)~ - , ( c ' , , - . . , c ~ = ) ^  A r ( c ~ , . . . , c , ) .  
7 ~ G  

Hence (~, r*)~  - O ' ~ x l ,  . .  ., x m q ~ ( x , , . . . ,  x , )  which is a contradiction. 

(~,  r*) is 0-dimensional and regular, since (~, r*) has a clopen basis of 

cardinality K which is closed under intersections of cardinality less than K. This is 
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because x is regular, the definition of T~, a < K, and r*. We will show (~,  r*) is 

normal by using a generalization of [2, Theorem 18.14, p. 121] as follows: 

THEOREM 3.1.7. Let (X, z) be a regular topological space of cardinality K, K 

regular. Then if r has a basis of cardinality K closed under intersections of 

cardinality less than K then it is normal. In fact it is paracompact [2, p. 338]. 

Also note that each ~0~ is continuous in (~ , r*)  since r n ~ o 1 ~ ) =  

One should notice that in the above proof we have actually constructed (~, r*) 

so that each product topology is normal. 

This theorem has the following interesting corollary. 

COROLLARY 3.1.8. Let E be a countable L (O~o , )  theory. Then "Z is consistent 

with B0, . . . ,B7 ,  B8~o, ~ E I, and Q2xy ( x ~  y) if and only if ~ has a second 

countable O-dimensional metrizable complete topological model where each ~ is 

continuous. 

PROOF. Use the fact that a second countable, regular and Hausdortt space is 

metrizable. 

w 3.2. In this section we study the interrelation of L (Q) theories and L ( Q ~ )  

theories. The reason for this is that in L ( Q ~ )  we have a method of expressing 

the fact that a function is continuous in a product topology. In mathematics there 

are many occasions where this situation arises in a first order theory, e.g. 

topological groups, topological vector spaces, etc. It is natural to ask what 

conditions on functions (or relations) in an L ( Q )  theory, :E, are necessary to 

insure that they can be interpreted as continuous functions in some L(Q~,~)  

theory extending E. 

The following definition and theorem formalize this. 

DEFINITION 3.2.1. A collection of (n,m)-ary relations ~ ( x ~ , . . . , x , ,  

Y~,'" ", Ym), a E / ,  is called L(O)-continuous (in E) if and only if 

- ( ,)) A Oy ,~(y , ) - -*Vx , , . .  ",xkOz 3y~, . . . , ym ~(y, )  ^ O(t,y~,. .  ",ym , 
i = l  i 1 

~E(cr ( s  and c r : n ~ n ,  is consistent with E (where 0 is an arbitrary 

composition of the r i.e. 0 E WT, and (cr(s is the collection of k-tuples 

which are permuted by o- and then any number of them are replaced by z). 

Now we may proceed to prove the main result of this section. 
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THEOREM 3.2.2. Let T be an L ( O )  theory and ~ ( X l , ' ' ' , X , ~ , y l , ' ' ' , y m a ) ,  

Ol E L be (n~, m~)-ary L(O)-continuous relations. Then there is an L ( O ~ , )  

theory T*, such that T C T* and B 0 , . . . ,  B7, B8~o, t~ E I, are in T*. (This is to 

say that we can find a complete topological model (9~, q) of T where each 9, is 

continuous in the product topology.) 

PROOF. Let (9~, q) be an L ( O )  topological model of T where cl is generated by 
the definable open sets with parameters (one exists by Theorem 2.1). Define q*~ 

as follows: 

* - the topology generated by q n - -  

{ ~ (  1~I,-1 ~7,) 6~ Eq,~?i definable, ~pE W T  and ~ maps into a " } .  

We claim that 

(~,qT, q~,q~," �9 ") ---- (~, q), 
L(QXA) 

which implies the theorem, since (9~, q *, q*, q * , . .  �9 ) models B 0 , . . . ,  B7, B8~., 
t~ E / ,  by a slight modification of Lemma 2.2. 

We will show that they are L (Q) elementarily equivalent by showing that for 
every subbasic open set (7* E q *, i.e. ~* = r ~7~), ~ E q, r E WT, there is a 

~b(xl,..., x,) E L ( Q )  with parameters from A such that ~* = 
{d ](9~,q)~ ~b[ti]}, and also 

(*) (9~, q)~ Vxl,. . . ,  x,_,, x, . , , . . . ,  x.Qx,~(x,,..., x.) 

for all l_-<i-<n. 

To show this we take r E W T  (one should notice, since all members of WTo 

are definable and the inductive steps for WT, are definable, that each q~ E W T  is 
definable), then r ~7~) is definable by 

, x~  = �9 , , . (  

where each ~b, defines ~7~. 

To show (9~, q) ~ Vx~, �9 �9 x,_l, x,+l," ;., x, Qx, O(x~,..., x,) for all 1 _--- i -< n we 

use the fact that each member  of WTo is L(Q)-cont inuous by the hypothesis to 

the theorem. From this it can be seen that each ~ E W T  is in fact L(Q)-  

continuous. This is because composition, projection, maps of coordinates and 

products of functions preserve L(Q)-continuity.  Then we see that (*) is a 

consequence of L(Q)-continuity and the definition of O. 
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Thus to return to showing the L(Q)  elementary equivalence of (92, cl) and 

(92, q *, q ~, q 3", �9 �9 �9 ) we notice that (*) implies that in fact q = q 1". Hence we are 

done. 

Consider a group (G,.) .  Now take a topology ~- on G. We call ( G , . ,  I") a 

topological group if -1 and �9 are continuous maps into G. Other  definitions of 

topological-algebraic structures, e.g. a topological vector space, often appear in 

mathematics. Using Theorem 3.2.2 we are now able to give an L (Q)  axiomatiza- 

tion of their L (Q)  theories. For more details on topological groups, etc., see [5]. 

We formalize these comments in the following corollary. 

COROLLARY 3.2.3. Let T be an L (Q)  theory. Then T has a topological group 

model if and only if T is consistent with the basic L ( Q ) axioms, group axioms and 
Qx~ (x) ~ Ox~ (~), where 

. ,  E(1) ~,, e(2) .,  g(k)  ) 
~E ,Y ~(1) " 7 o-(2) . . . . .  7 o-(k) 

X 

o':k----~k and e : k----~{1,-I}. 

PROOF. These axioms for topological groups are just the definition of L(Q)- 

continuity for x -~ and .. 

COROLLARY 3.2.4. Let T be an L ( Q ) theory. Then T has a topological abelian 

group model if and only if T is consistent with the basic L ( Q ) axioms, abelian 
group axioms, Qx~o(x)---~ Qx~(x-1), Qx~o(x)-* Qx~(x" �9 y). 

PROOF. Analogous to Corollary 3.2.3. 

We will continue the study of the L (Q)  theory and decidability of topological 

abelian groups and vector spaces in Sgro [13]. 

w Using the completeness theorem for L , , ~ ( Q ~ )  in w we can give a 

completeness theorem for L~,I~,(Q:~ ) which is the infinitary logic formed by 

combining L ~1, with the quantifier symbols Q", n E to. L ~,,~ is the infinitary logic 

formed by allowing countably infinite conjuntions but only finite quantifiers. 

In L ~,~(Q ~ )  the notion of (92, q 1, Q2, Q 3 , " "  ) ~ q [a~, �9 �9 a, ] is defined in the 

natural way. 

The axioms for L~,~(QT,~,) are straightforward and are adaptations to 

L~ , , . (Q~ )  of those found in Keisler [7] and Sgro [12]. 

I. Axioms of L ( Q ~ ) .  
II. A.~,~ (~ -~ ~b.)---) (~ --~ A,~,~ ~b,). 

III. (A.~,~tp,)--~ tp,~, m E co. 

IV. A,e .Q=x, ,  "" ",xm~b, (x,, '" ",x.,)--'~ O=xl, '"  ",x,, V,e .d/ ,  (x,, '" ",xm). 
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The rules of inference are modus ponens, generalization and the following 

infinite rule: 

From ~b0, ~ ,  qJ2,'" ", infer A t#,. 
r l E t a  

We thus are now able to prove: 

THEOREM 3.3.1. A sentence ~b of L ~ , (  Q",~,) is consistent with I, II, III ,  and IV 

if and only if tO has a complete-topological model where each ~ ,  ~ E I, is 

continuous. 

PROOF. This completeness theorem for L ~ , ~ ( Q ~ )  may be proved as in [12, 

3.3.1]. The only observation we need to make  is that when we obtain 

(9~ ,q* ,q* ,q* , - . . ) ,  an L ' ( Q ~ )  model of B 0 , . . . , B 7  and B8,a, a E L  and 6, 

where ~ is equivalent to an L'(Q2~,)  sentence (by Theorem 2.4 and the fact that 

L is countable), we obtain a topology, r, on 9~ such that 

(9~, r) -= ( ~ , q L q L q * , ' " ) .  
L'(Q~e~)(A ) 

Hence (gJ, r)l = tp and is complete-topological. 

Concluding this paper we note that the counterexamples to definability and 

interpolation for L(Q) (presented in [12]) also work for L(Q~) using the same 

arguments. 
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